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Abstract

For the past 30 years, decision tree methods have been one of the most widely-
used approaches in machine learning across industry and academia, due in large
part to their interpretability. However, this interpretability comes at a price—the
performance of classical decision tree methods is typically not competitive with state-
of-the-art methods like random forests and gradient boosted trees.

A key limitation of classical decision tree methods is their use of a greedy heuristic
for training. The tree is therefore constructed one locally-optimal split at a time,
and so the final tree as a whole may be far from global optimality. Motivated by the
increase in performance of mixed-integer optimization methods over the last 30 years,
we formulate the problem of constructing the optimal decision tree using discrete
optimization, allowing us to construct the entire decision tree in a single step and
hence find the single tree that best minimizes the training error. We develop high-
performance local search methods that allow us to efficiently solve this problem and
find optimal decision trees with both parallel (axes-aligned) and hyperplane splits.

We show that our approach using modern optimization results in decision trees
that improve significantly upon classical decision tree methods. In particular, across a
suite of synthetic and real-world classification and regression examples, our methods
perform similarly to random forests and boosted trees whilst maintaining the inter-
pretability advantage of a single decision tree, thus alleviating the need to choose
between performance and interpretability.

We also adapt our approach to the problem of prescription, where the goal is to
make optimal prescriptions for each observation. While constructing the tree, our
method simultaneously infers the unknown counterfactuals in the data and learns to
make optimal prescriptions. This results in a decision tree that optimizes both the
predictive and prescriptive error, and delivers an interpretable solution that offers
significant improvements upon the existing state-of-the-art in prescriptive problems.

Thesis Supervisor: Dimitris Bertsimas
Title: Boeing Professor of Operations Research
Co-director, Operations Research Center
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Chapter 1

Introduction

Machine Learning methods represent one of the most promising and widely applicable

methodologies of our times that aspires to tackle some of the world’s most important

questions:

∙ What is intelligence?

∙ Can we cure some of the most significant human diseases like cancer and car-

diovascular diseases using electronic medical records and genomic data?

∙ Can we improve human productivity, for example by creating self-driving cars?

Decision trees are one of the most widely-used techniques in Machine Learning

used for the central problems of regression and classification. The leading work for

decision tree methods in classification is CART (Classification and Regression Trees),

proposed by Breiman et al. [25]. This book has roughly 37,000 Google Scholar cita-

tions (as of February 2018) and it is one of the most cited works in the mathematical

sciences. Guided by the training data (x𝑖, 𝑦𝑖), 𝑖 = 1, . . . 𝑛, decision trees recursively

partition the feature space for classification problems and assign a label to each result-

ing partition. The space is partitioned into boxes using splits parallel to the coordinate

axes: Is 𝑥𝑖 < 𝑎 or 𝑥𝑖 ≥ 𝑎? The tree is then used to classify future points according

to these splits and labels. The key advantage of decision trees over other methods

is that they are very interpretable, and in many applications this interpretability is
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often preferred over other less-interpretable methods with higher accuracy. In health-

care for instance, decision trees resemble a doctor’s thinking in that doctors typically

evaluate a patient’s medical condition one variable at a time, and thus are very useful

for assisting doctors in their work. In contrast, other methods that are not consistent

with human thinking are far less useful in this setting.

In this chapter, we give an overview of the CART algorithm, outline some of the

limitations of CART, discuss the remarkable progress of discrete optimization which

is a key tool we use in the thesis, and outline the motivation, philosophy, objectives

and structure of the thesis.

1.1 Overview of CART

CART takes a top-down approach to determining the partitions in the tree. Starting

from the root node, a split is determined by solving an optimization problem to find

the best split, before dividing the points according to the split and recursing on the

two resulting child nodes. CART chooses the best split using an impurity measure,

which is a non-linear quantity that measures the similarity of labels among points in

a group. CART seeks the split that divides the points into two groups such that the

sum of the impurities of each group is minimized. Typical choices for the impurity

measure are the gini or twoing criteria for classification problems, and the mean

squared error or mean absolute error for regression.

This greedy, recursive partitioning process continues at each new node until one

of the following stopping criteria is met:

∙ The node being partitioned has fewer points than the minimum allowed leaf

size, a parameter of CART denoted 𝑁min;

∙ The impurity of the node cannot be reduced by any candidate split, e.g., if all

points in the node have the same label.

When the partitioning has concluded, each leaf node in the tree is assigned a label

that is used for predicting the labels of new data points. The label for the leaf is
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assigned using the labels of the training points that fall into this leaf node; typically

the mode (most common) of these labels is used for classification problems, and the

mean of these labels is used for regression problems.

To illustrate this process, in Figure 1-1 we provide an example of the CART

algorithm applied to Fisher’s “Iris” dataset, a classic and well-known classification

dataset from the UCI Machine Learning Repository [77]. Each of the 150 points in the

dataset corresponds to an iris flower which is one of three species (“setosa”, “versicolor”

or “virginica”). There are four measurements recorded for each flower: the length and

width of the sepals and petals. The goal is to predict the species of iris using only

the four physical measurements. In Figure 1-1a, we plot the data plotted according

to the petal length and width. Figures 1-1b–1-1e show the progression of the CART

algorithm on this data. CART first splits on the petal length, perfectly separating

the “setosa” species from the others, and so no further splitting is needed on the left

side of this split. The second split is on the petal width, and largely separates the

“versicolor” and “virginica” species from each other, although the separation is not

perfect. The third and fourth splits refine this separation so that all partitions are

pure. Figure 1-1f shows the final labels assigned to each partition of the space, which

correspond to the leaf nodes on the CART tree. The final partitioning is also shown

in tree form in Figure 1-2.

One of the primary concerns when growing the tree is to avoid overfitting the

tree to the training data. It is possible to achieve very high accuracy on the training

points with a large tree, but such a tree is then likely to perform poorly when making

predictions on new data. We can restrict the degree of overfitting by controlling the

tradeoff between the training accuracy and the number of splits in the tree, which is

also known as the complexity of the tree.

CART controls this tradeoff between accuracy and complexity by introducing a

penalty on the complexity of the tree. Each split in the tree is required to improve the

accuracy by more than the value of the complexity parameter, denoted 𝛼, otherwise

the split will not be included in the tree. By adjusting the value of 𝛼, we can change

the complexity of the final tree and thus control the degree of overfitting to the
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Figure 1-1: An example of the CART algorithm applied to the “Iris” dataset that
shows the recursive partitioning step-by-step.

(a) Data
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(b) First split
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(e) Fourth split
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Figure 1-2: The tree learned by CART for the “Iris” dataset.

Petal Width < 1.55versicolor

virginica

Petal Length < 2.45

versicolor

Petal Width < 1.75setosa

virginicaPetal Length < 4.95

training data. The penalty on complexity is applied retroactively after the tree has

been grown. At each split in the tree, we consider replacing the split and its children

with a single leaf instead, and calculate the change in accuracy resulting from this

change. If the accuracy improvement due to the split is lower than 𝛼, we replace this

split with a leaf. This process is repeated until all splits in the tree have an accuracy

improvement of at least 𝛼. This procedure is known as pruning, because the weakest

splits in the tree are pruned, leaving only important splits.

Returning to the example of Figure 1-1, we see that the fourth split, applied

in Figure 1-1e, creates lower and upper partitions that misclassify 0 and 1 points,

respectively. If this split were not applied, the single overall partition would predict

“virginica” in line with the most common label, and so the resulting misclassification

would be 2 points. This split has therefore only increased the accuracy by a single

point, whereas the other splits in the tree give much larger improvements in accuracy,

and so pruning the tree will enable us to remove this less significant split, depending

on the tradeoff we desire between accuracy and complexity. The original tree is shown

in Figure 1-2, and if we prune this tree with the complexity parameter 𝛼 = 0.01, we

get the tree shown in Figure 1-3. In the pruned tree, the fourth split has indeed been

removed, because the increase in accuracy of 1 point did not outweigh the cost of the

additional complexity of another split.

In practice, the value for the complexity parameter would typically be chosen
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Figure 1-3: The CART tree for the “Iris” dataset after conducting pruning.

virginicaversicolor

Petal Length < 2.45

Petal Width < 1.75setosa

virginicaPetal Length < 4.95

using a hold-out validation set. In this case, we choose the particular value for 𝛼

that maximizes the accuracy of the tree on this validation set, rather than on the

training set, with the goal of choosing the “right-sized tree” that performs best on

new unseen data. The standard procedure for tuning the value of 𝛼 for CART is

known as cost-complexity pruning, which we will introduce in Section 2.4.

Since we are trying to determine the tree with the best tradeoff between accuracy

and interpretability, it is natural to search among the trees of a given complexity for

the one with the best accuracy. For instance, using the methodology we develop in

Chapter 2, we can verify that the tree in Figure 1-3 is the most accurate tree with

three splits: it misclassifies only three points, and there are no other trees with three

or fewer splits that have a lower misclassification score. We therefore refer to this

tree as the optimal tree with three splits. Note that there can be many many such

optimal trees with the same number of splits and the minimal misclassification.

A natural extension to decision tree methods like CART is to consider splits that

are not parallel to the axes. If we examine the example in Figure 1-1, we see that

the CART tree uses two splits to separate the “versicolor” and “virginica” species.

However, it seems that these points would also be relatively well-separated by a single

diagonal split. Such a partitioning is shown in Figure 1-4, and the corresponding tree

that generates these partitions is given in Figure 1-5. This tree with hyperplane splits

only misclassifies two points, and is able to better discover the structure in the data,

whereas the CART tree is approximating this structure with multiple axis-parallel

splits. This results in the tree with hyperplane splits having both higher accuracy
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Figure 1-4: An example of partitioning the “Iris” dataset with arbitrary hyperplanes
rather than just splits parallel to the axes.
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Figure 1-5: A tree for the “Iris” dataset with hyperplane splits.

Petal Width < 0.80

Petal Length + 2.62 · Petal Width < 8.92setosa

virginicaversicolor

and one fewer split than the tree with parallel splits. Trees with hyperplane splits are

typically more expensive to compute than those with parallel splits, because there

are many more possible splits to consider when trying to find the optimal split during

the recursion.

1.2 Limitations of CART

The main shortcoming of the top-down approach taken by CART and other popular

decision tree methods like C4.5 [104] and ID3 [103], is its fundamentally greedy nature.

Each split in the tree is determined in isolation without considering the possible

impact of future splits in the tree. This can lead to trees that do not capture well

the underlying characteristics of the dataset, potentially leading to weak performance

when classifying future points. Figure 1-6 shows an example where a tree grown via

top-down induction is very different from the true tree that generated the data.

Another limitation of top-down induction methods is that they typically require
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Figure 1-6: An example where greedy tree induction fails to learn the truth in the
data. Figure 1-6a shows the data, and the true decision tree that generated the data
is given in Figure 1-6b. Figures 1-6c–1-6f show the evolution of a tree created via
greedy top-down induction. We see that the greedy induction chooses the wrong
split at the very first step, and generates a final tree that has a significantly different
structure to the true tree, despite having the same accuracy.
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pruning to achieve trees that generalize well. Pruning is needed because top-down

induction is unable to handle penalties (we call them complexity penalties) on how

large the tree becomes while growing it, since powerful splits may be hidden behind

weaker splits. This means that the best tree might not be found by the top-down

method if the complexity penalty is too high and prevents the first weaker split from

being selected.

The usual approach to resolve this is to grow the tree as deep as possible before

pruning back up the tree using the complexity penalty. This avoids the problem

of weaker splits hiding stronger splits, but it means that the training occurs in two

phases, growing via a series of greedy decisions, followed by pruning. Lookahead

heuristics such as IDX [94], LSID3 and ID3-k [43] also aim to resolve this problem

of strong splits being hidden behind weak splits by finding new splits based on op-

timizing deeper trees rooted at the current leaf, rather than just optimizing a single
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split. However, it is unclear whether these methods can lead to trees with better

generalization ability and avoid the so-called look-ahead pathology of decision tree

learning [89].

In classification problems, top-down induction methods typically optimize an im-

purity measure when selecting splits, rather than using the misclassification rate of

training points. This seems odd when the misclassification rate is the final objective

being targeted by the tree, and indeed is also the measure that is used when pruning

the tree. Breiman et al. [25, p.97] explain why CART uses impurity measures in place

of the more natural objective of misclassification:

. . . the [misclassification] criterion does not seem to appropriately re-

ward splits that are more desirable in the context of the continued growth

of the tree. . . .This problem is largely caused by the fact that our tree

growing structure is based on a one-step optimization procedure.

Indeed, the misclassification criterion does not always work well within a greedy

framework. This was the case in the example from Figure 1-6, where adding a split

to Figure 1-6d to get to Figure 1-6e improves the impurity measure, but does not

improve the misclassification error, and so we would be unable to proceed past the

second greedy split if we were simply using the misclassification criterion. It seems

natural to believe that growing the decision tree with respect to the final objective

function would lead to better splits, but the use of top-down induction methods and

their requirement for pruning prevents the use of this objective.

The natural way to address the limitations of CART is to form the entire decision

tree in a single step, allowing each split to be determined with full knowledge of all

other splits. This would result in the optimal decision tree for the training data. This

is not a new idea; Breiman et al. [25, p.42] noted the potential for such a method:

Finally, another problem frequently mentioned (by others, not by us)

is that the tree procedure is only one-step optimal and not overall optimal

. . . If one could search all possible partitions . . . the two results might be

quite different . . .At this stage of computer technology, an overall optimal
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tree growing procedure does not appear feasible for any reasonably sized

dataset.

The use of top-down induction and pruning in CART was therefore not due to

a belief that such a procedure was inherently better, but instead was guided by

practical limitations of the time, given the difficulty of finding an optimal tree. Indeed,

it is well-known that the problem of constructing optimal binary decision trees is

𝑁𝑃 -hard [64]. Nevertheless, there have been many efforts previously to develop

effective ways of constructing optimal univariate decision trees using a variety of

heuristic methods for growing the tree in one step, including linear optimization [7],

continuous optimization [8], dynamic programming [37, 99], genetic algorithms [109],

and more recently, evolutionary algorithms [55], and optimizing an upper bound

on the tree error using stochastic gradient descent [93]. However, none of these

methods have been able to produce certifiably optimal trees in practical times. A

different approach is taken by the methods T2 [4], T3 [112] and T3C [117], a family

of efficient enumeration approaches which create optimal non-binary decision trees of

depths up to 3. However, trees produced using these enumeration schemes are not as

interpretable as binary decision trees, and do not perform significantly better than

current heuristic approaches [112, 117].

1.3 The Remarkable Progress of MIO

We believe the lack of success in developing an algorithm for optimal decision trees can

be attributed to a failure to address correctly the underlying nature of the decision tree

problem. Constructing a decision tree involves a series of discrete decisions—whether

to split at a node in the tree, which variable to split on—and discrete outcomes—which

leaf node a point falls into, whether a point is correctly classified in a classification

problem—and as such, the problem of creating an optimal decision tree is best posed

as a Mixed-Integer Optimization (MIO) problem.

Continuous optimization methods have been widely used in statistics over the

past 40 years, but MIO methods, which have been used to great effect in many other
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fields, have not had the same impact on statistics. Despite the knowledge that many

statistical problems have natural MIO formulations [1], there is the belief within the

statistics/machine learning community that MIO problems are intractable even for

small to medium instances, which was true in the early 1970s when the first continuous

optimization methods for statistics were being developed.

However, the last twenty-five years have seen an incredible increase in the com-

putational power of MIO solvers, and modern MIO solvers such as Gurobi [56]

and CPLEX [65] are able to solve linear MIO problems of considerable size. To

quantify this increase, Bixby [22] tested a set of MIO problems on the same com-

puter using CPLEX 1.2, released in 1991, through CPLEX 11, released in 2007.

The total speedup factor was measured to be more than 29,000 between these ver-

sions [22, 92]. Gurobi 1.0, an MIO solver first released in 2009, was measured to have

similar performance to CPLEX 11. Version-on-version speed comparisons of succes-

sive Gurobi releases have shown a speedup factor of around 43 between Gurobi 7.0,

released in 2016, and Gurobi 1.0 [22, 92, 57], so the combined machine-independent

speedup factor in MIO solvers between 1991 and 2015 is approximately 1,250,000.

This impressive speedup factor is due to incorporating both theoretical and practi-

cal advances into MIO solvers. Cutting plane theory, disjunctive programming for

branching rules, improved heuristic methods, techniques for preprocessing MIOs, us-

ing linear optimization as a black box to be called by MIO solvers, and improved

linear optimization methods have all contributed greatly to the speed improvements

in MIO solvers [22]. Coupled with the increase in computer hardware during this

same period as shown in Figure 1-7, a factor of approximately 1,560,000 [113], the

overall speedup factor is approximately 2 trillion! This astonishing increase in MIO

solver performance has enabled many recent successes when applying modern MIO

methods to a selection of these statistical problems [18, 13, 14, 15].

The belief that MIO approaches to problems in statistics are not practically rel-

evant was formed in the 1970s and 1980s and it was at the time justified. Given the

astonishing speedup of MIO solvers and computer hardware in the last twenty-five

years, the mindset of MIO as theoretically elegant but practically irrelevant is no

27



Figure 1-7: Peak supercomputer speed in GFlop/s (log scale) from 1994–2016.
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longer supported. In this thesis, we extend this re-examination of statistics under

a modern optimization lens by using MIO to formulate and solve the decision tree

training problem, and provide empirical evidence of the success of this approach.

1.4 What is Tractable?

The computer science community has developed the notion that problems that are

solvable by an algorithm in polynomial time (in the bits to write the input of the

instance of a problem), that is they belong to the class 𝑃 , are theoretically tractable.

In contrast, the theory of 𝑁𝑃 -completeness, see Garey and Johnson [51], has been

developed in the 1970s to explain that a problem that is 𝑁𝑃 -hard can not be solved

in polynomial time unless 𝑃 = 𝑁𝑃 . While is still unknown whether 𝑃 = 𝑁𝑃 , it is

widely believed that 𝑃 ̸= 𝑁𝑃 . Thus, the current belief is that theoretical tractability

is equivalent to polynomial time solvability. In this way, optimal trees being 𝑁𝑃 -hard

are believed to be theoretically intractable.

It is our belief, however, that a 2 trillion time speedup forces us to re-consider

what is practically tractable. To motivate our discussion, let us give two examples.

The simplex method developed by George Dantzig [38, 39] for linear optimization

problems is not a polynomial time algorithm (for many variants of the method there
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are instances that require exponential time to find an optimal solution). Yet, to this

day it is an extremely practical algorithm that is being used widely in practice for

sizes involving millions of variables and constraints. In the same way, the traveling

salesman problem is 𝑁𝑃 -hard, yet problems with one million cities can be routinely

solved in minutes. In other words, the predictions of complexity theory regarding

tractability have often negative correlation with empirical evidence.

For this reason, we define the notion of practical tractability (practability). A

problem is practically tractable (practable) if it can be solved in times and for sizes

that are appropriate for the application that motivated the problem. Let us give some

examples. What is relevant for an online trading problem is our ability to solve it in

milliseconds for sizes of 500–1000 securities. An optimal tree for medical diagnosis

needs to be able to be constructed in hours or days for sizes involving hundreds of

thousands of patients, but it should be able to run online in seconds to diagnose a

new patient. What is important is that polynomial solvability or 𝑁𝑃 -hardness does

not give relevant information for our ability to solve the problem in the real world.

Given that the motivation of this thesis is to solve real world problems, we will use

the notion of practical tractability alongside theoretical tractability when evaluating

our algorithms.

1.5 Motivation, Philosophy and Goal

Decision trees have good but, because of the limitations we discussed, not excellent

accuracy for prediction problems. For this reason Leo Breiman [29] introduced ran-

dom forests, also extremely influential in mathematical sciences, having been cited

26,144 times (as of February 13, 2017). The idea of random forests is to create a large

collection of trees each trained on a random collection of features and on a random

subset of the training data. The final prediction is based on a majority vote among

the trees in the forest for classification, and the mean prediction for regression. The

accuracy of random forests improves upon the accuracy of a single tree, but at the

expense of loss of interpretability. Jerry Friedman [49] proposed the idea of gradi-
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ent boosting, which develops a collection of sequentially generated trees where tree

𝑇𝑘+1 is trained to predict the residuals of the collection of trees 𝑇1, . . . , 𝑇𝑘. Boosted

trees have comparable or slightly better accuracy compared to random forests, but

also sacrifice interpretability as they use a collection of trees to make a prediction as

opposed to a single tree.

Given the success of MIO, our discussion of practical tractability and of the state

of the art of decision trees, natural questions arise:

1. Given that decision trees are found by greedy methods, can we find globally

optimal trees in a practically tractable way?

2. Can we construct optimal trees in a practically tractable way in which we use

hyperplanes splits to partition the space?

3. Do optimal trees with either parallel or hyperplane splits lead to significantly

improved accuracy compared to CART?

4. How does the accuracy of optimal trees compare to random forests and boosted

trees?

5. Can we construct optimal regression trees in a practically tractable way in

which we use either parallel or hyperplane splits and the prediction in each final

partition (a leaf in the tree) is an affine function of the features, similar to linear

regression?

6. Decision trees have been used only for prediction. Can we develop optimal

classification and regression trees for prescription?

7. Most importantly, do optimal trees provide a significant advantage in real world

settings?

Motivated by these questions we present in this thesis a theory for constructing

in a practically tractable way optimal trees for prediction and prescriptions. In this

effort, we are guided by the words of George Dantzig [39], who in the opening sentence

of his book “Linear Programming and Extensions” writes
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The final test of any theory is its capacity to solve the problems which

originated it.

Specifically, in the following chapters we show

1. Optimal or near-optimal trees for classification and regression with either paral-

lel or hyperplane splits can be constructed in a both theoretically and practically

tractable way.

2. Optimal trees with parallel splits improve the prediction accuracy of CART,

while still maintaining interpretability.

3. Optimal trees with hyperplane splits significantly improve the prediction accu-

racy of CART. We find that the accuracy of optimal trees with hyperplane splits

is comparable to random forests and boosted trees. We feel this is materially

relevant, since with one interpretable tree, we match or improve upon methods

with state-of-the-art accuracy that require a large collection of trees, which are

not interpretable.

4. We construct optimal prescription trees that advances machine learning in the

direction of optimal decisions rather than predictions.

5. We provide evidence from real world applications that our methods provide

significant advantages in accuracy or interpretability or both.

Our overall philosophy is to emphasize practical tractability and impact on real-world

applications.

1.6 Structure of the Thesis

A chapter by chapter description of the thesis is as follows.

Chapter 2: Introduces optimal classification trees using parallel splits, provides

solutions derived both using MIO and local improvement methods and presents results

on accuracy in both synthetic and real world data sets.
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Chapter 3: Discusses optimal classification trees using hyperplane splits and em-

phasizes how the method compares with random forests and boosted trees using both

real and synthetic data sets.

Chapter 4: Contains optimal regression trees with constant predictions, where the

prediction in each leaf of the tree is the average of all the values of the dependent

variable among all data points that are included in the leaf of the tree, and compares

how this approach improves upon the CART methodology using real and synthetic

data.

Chapter 5: Deals with optimal regression trees with linear predictions, where the

prediction in each leaf of the tree comes from a linear regression involving all the points

that are included in the leaf, and presents evidence that they lead to significantly

improved accuracy.

Chapter 6: Includes a discussion of optimal prescription trees that are generaliza-

tions of the prediction trees we presented in earlier chapters and aim to construct

trees that lead to optimal decisions, and provides several examples that suggest that

prescription trees provide an edge in taking optimal decisions.

Chapter 7: Provides a real world example of using optimal classification trees to

diagnose head trauma that illustrate the edge these methods have over alternatives.

Chapter 8: Summarizes the key messages of the thesis and includes some closing

thoughts.

Notation

Throughout the thesis, boldfaced lowercase letters (x,y, . . .) denote vectors, bold-

faced capital letters (X,Y, . . .) denote matrices, and ordinary lowercase letters (𝑥, 𝑦)

denote scalars. Calligraphic type (𝒫 ,𝒮, . . .) denotes sets. The notation [𝑛] is used as

shorthand for the set {1, . . . 𝑛}.
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Chapter 2

Optimal Classification Trees with

Parallel Splits

In this chapter, we demonstrate that formulating the decision tree problem using

MIO leads to a tractable approach and delivers practical solutions that significantly

outperform classical approaches.

We summarize the main results of this chapter below:

1. We present a new, novel formulation of the classical decision tree problem as

an MIO problem that motivates our new classification method, Optimal Clas-

sification Trees (OCT).

2. Using a range of tests with synthetic data comparing OCT against CART, we

demonstrate that solving the decision tree problem to optimality yields trees

that better reflect the ground truth in the data, refuting the belief that such

optimal methods will simply overfit to the training set and not generalize well.

3. We demonstrate that our OCT method outperforms classical decision tree meth-

ods in practical applications. We comprehensively benchmark OCT against the

state-of-the-art CART on a sample of 60 datasets from the UCI Machine Learn-

ing Repository. We show that OCT yields higher out-of-sample accuracy than

CART, with average improvements of 1–2% over CART across all datasets,
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depending on the depth of tree used, and that this difference is statistically

significant at all depths.

4. To provide guidance to machine learning practitioners, we present a simple de-

cision rule that predicts when OCT will offer the largest accuracy improvements

over CART. If the number of points is small or the number of features is large,

this rule is satisfied indicating the problem has high difficulty. Across our sam-

ple of datasets where this rule is satisfied, OCT improves upon CART by an

average of 2.59%, otherwise the mean improvement is 0.26%.

We note that there have been efforts in the past to apply MIO methods to clas-

sification problems. CRIO (Classification and Regression via Integer Optimization),

proposed by Bertsimas and Shioda [16], uses MIO to partition and classify the data

points. CRIO was not able to solve the classification problems to provable optimal-

ity for moderately-sized classification problems, and the practical improvement over

CART was not significant. In contrast, in this thesis we present a very different MIO

approach based around solving the same problem that CART seeks to solve, and this

approach provides material improvement over CART for a variety of datasets.

2.1 Review of Classification Tree Methods

We are given the training data (X,y), containing 𝑛 observations (x𝑖, 𝑦𝑖), 𝑖 ∈ [𝑛], each

with 𝑝 features x𝑖 ∈ R𝑝 and a class label 𝑦𝑖 ∈ [𝐾] indicating which of 𝐾 possible labels

is assigned to this point. We assume without loss of generality that the values for

each dimension across the training data are normalized to the 0–1 interval, meaning

each x𝑖 ∈ [0, 1]𝑝.

Decision tree methods seek to recursively partition [0, 1]𝑝 to yield a number of

hierarchical, disjoint regions that represent a classification tree. An example of a

decision tree is shown in Figure 2-1. The final tree is comprised of branch nodes and

leaf nodes:

∙ Branch nodes apply a split with parameters a and 𝑏. For a given point 𝑖, if
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a𝑇x𝑖 < 𝑏 the point will follow the left branch from the node, otherwise it takes

the right branch. Most classical methods, including CART, produce univariate

or axis-aligned decision trees which restrict the split to a single dimension, i.e.,

a single component of a will be 1 and all others will be 0.

∙ Leaf nodes are assigned a class that will determine the prediction for all data

points that fall into the leaf node. The assigned class is usually taken to be the

most-common class among points contained in the leaf node.

Figure 2-1: An example of a decision tree with two branch nodes, A and B, and three
leaf nodes, 1, 2 and 3.

A

B 1

2 3

a𝑇
𝐴x𝑖 < 𝑏𝐴 a𝑇

𝐴x𝑖 ≥ 𝑏𝐴

a𝑇
𝐵x𝑖 < 𝑏𝐵 a𝑇

𝐵x𝑖 ≥ 𝑏𝐵

Classical decision tree methods like CART, ID3, and C4.5 take a top-down ap-

proach to building the tree. At each step of the partitioning process, they seek to

find a split that will partition the current region in such a way to maximize a so-

called splitting criterion. This criterion is often based on the label impurity of the

data points contained in the resulting regions instead of minimizing the resulting

misclassification error, which as discussed earlier is a byproduct of using a top-down

induction process to grow the tree. The algorithm proceeds to recursively partition

the two new regions that are created by the hyperplane split. The partitioning termi-

nates once any one of a number of stopping criteria are met. The criteria for CART

are as follows:

∙ It is not possible to create a split where each side of the partition has at least

a certain number of nodes, 𝑁min;
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∙ All points in the candidate node share the same class.

Once the splitting process is complete, a class label 𝑐 ∈ [𝐾] is assigned to each

region. This class will be used to predict the class of any points contained inside the

region. As mentioned earlier, this assigned class will typically be the most common

class among the points in the region.

The final step in the process is pruning the tree in an attempt to avoid overfitting.

The pruning process works upwards through the partition nodes from the bottom

of the tree. The decision of whether to prune a node is controlled by the so-called

complexity parameter, denoted by 𝛼, which balances the additional complexity of

adding the split at the node against the increase in predictive accuracy that it offers.

A higher complexity parameter leads to more and more nodes being pruned off,

resulting in smaller trees.

As discussed previously, this two-stage growing and pruning procedure for creating

the tree is required when using a top-down induction approach, as otherwise the

penalties on tree complexity may prevent the method from selecting a weaker split

that then allows a selection of a stronger split in the next stage. In this sense, the

strong split is hidden behind the weak split, and this strong split may be passed over

if the growing-then-pruning approach is not used. An example of this phenomenon

is shown in Figure 2-2

Using the details of the CART procedure, we can state the problem that CART

attempts to solve as a formal optimization problem. There are two parameters in this

problem. The tradeoff between accuracy and complexity of the tree is controlled by

the complexity parameter 𝛼, and the minimum number of points we require in any leaf

node is given by 𝑁min. Given these parameters and the training data (x𝑖, 𝑦𝑖), 𝑖 ∈ [𝑛],

we seek a tree T that solves the problem:

min 𝑅(T) + 𝛼|T|

s.t. 𝑁(ℓ) ≥ 𝑁min ∀ℓ ∈ leaves(T)
(2.1)

where 𝑅(T) is the misclassification error of the tree T on the training data, |T| is

the number of branch nodes in tree T, and 𝑁(ℓ) is the number of training points
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Figure 2-2: An example of a strong split being hidden behind a weak split, motivat-
ing the grow-then-prune approach to tree construction. The data in Figure 2-2a is
generated according to a simple AND boolean rule: points in the positive quadrant
have label ∙, otherwise they are labeled ×. Figures 2-2b–2-2d show three possible
classification trees for this data, in increasing order of tree complexity, showing the
growth of the trees according to a top-down induction. The complexity 0 tree has no
splits and simply predicts the majority class, with an error of 25%. Adding the single
best split gives the complexity 1 tree, but does not improve the error rate. Adding
the best second split gives the complexity 2 tree, which encodes the AND relationship
exactly and reduces the error to 0%. The complexity 1 tree does not improve upon
the error of the complexity 0 tree, and so this split will not overcome any penalty
from the complexity parameter and thus does not lower the overall objective. This
causes the induction process to terminate with the complexity 0 tree as the best solu-
tion, despite the accuracy of the complexity 2 tree. The second split is only valuable
after the first split has been applied, and therefore is hidden behind the first split and
cannot be reached by the greedy induction process. Growing and then pruning the
tree in a two-stage process mitigates this limitation, as the tree is grown to full depth
before considering whether the splits actually decrease the overall objective during
pruning.

(a) Data

𝑥1

𝑥2

(b) Comp. 0: 25% error

×

(c) Comp. 1: 25% error

× ×

𝑥1 < 0 𝑥1 ≥ 0

(d) Comp. 2: 0% error

×

× ∙

𝑥1 < 0 𝑥1 ≥ 0

𝑥2 < 0 𝑥2 ≥ 0
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contained in leaf node ℓ. We refer to this problem as the optimal tree problem.

Notice that if we can solve this problem in a single step we obviate the need to

use an impurity measure when growing the tree, and also remove the need to prune

the tree after creation, as we have already accounted for the complexity penalty while

growing the tree.

We briefly note that our choice to use CART to define the optimal tree problem

was arbitrary, and one could similarly define this problem based on another method

like C4.5; we simply use this problem to demonstrate the advantages of taking a

problem that is traditionally solved by a heuristic and instead solving it to optimality.

Additionally, we note that the experiments of [90] found that CART and C4.5 did not

differ significantly in any measure of tree quality, including out-of-sample accuracy,

and so we do not believe our choice of CART over C4.5 to be an important one.

2.2 A Mixed-Integer Optimization Approach

As mentioned previously, the top-down, greedy nature of state-of-the-art decision tree

creation algorithms can lead to solutions that are only locally optimal. In this section,

we first argue that the natural way to pose the task of creating the globally optimal

decision tree is as an MIO problem, and then proceed to develop such a formulation.

To see that the most natural representation for formulating the optimal decision

tree problem (2.1) is using MIO, we note that at every step in tree creation, we are

required to make a number of discrete decisions:

∙ At every new node, we must choose to either branch or stop.

∙ After choosing to stop branching at a node, we must choose a label to assign to

this new leaf node.

∙ After choosing to branch, we must choose which of the variables to branch on.

∙ When classifying the training points according to the tree under construction,

we must choose to which leaf node a point will be assigned such that the struc-

ture of the tree is respected.
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Figure 2-3: The maximal tree for depth 𝐷 = 2. Branch nodes are red and leaf nodes
are blue.

1

2 3

4 5 6 7

a𝑇
1 x𝑖 < 𝑏1 a𝑇

1 x𝑖 ≥ 𝑏1

a𝑇
2 x𝑖 < 𝑏2 a𝑇

2 x𝑖 ≥ 𝑏2 a𝑇
3 x𝑖 < 𝑏3 a𝑇

3 x𝑖 ≥ 𝑏3

Formulating this problem using MIO allows us to model all of these discrete decisions

in a single problem, as opposed to recursive, top-down methods that must consider

these decision events in isolation. Modeling the construction process in this way

allows us to consider the full impact of the decisions being made at the top of the

tree, rather than simply making a series of locally optimal decisions, also avoiding

the need for pruning and impurity measures.

We will next formulate the optimal tree creation problem (2.1) as an MIO problem.

Consider the problem of trying to construct an optimal decision tree with a maximum

depth of 𝐷. Given this depth, we can construct the maximal tree of this depth with

𝑇 = 2(𝐷+1) − 1 nodes, which we index by 𝑡 ∈ [𝑇 ]. Figure 2-3 shows the maximal tree

of depth 2.

We use the notation 𝑝(𝑡) to refer to the parent node of node 𝑡, and 𝒜(𝑡) to denote

the set of ancestors of node 𝑡. We also define ℒ(𝑡) as the set of ancestors of 𝑡 whose

left branch has been followed on the path from the root node to 𝑡, and similarly ℛ(𝑡)

is the set of right-branch ancestors, such that 𝒜(𝑡) = ℒ(𝑡) ∪ ℛ(𝑡). For example, in

the tree in Figure 2-3, 𝐴𝐿(5) = {1}, 𝐴𝑅(5) = {2}, and 𝐴(5) = {1, 2}.

We divide the nodes in the tree into two sets:

Branch nodes: Nodes 𝑡 ∈ 𝒯𝐵 = {1, . . . , ⌊𝑇/2⌋} apply a split of the form aTx < 𝑏.

Points that satisfy this split follow the left branch in the tree, and those that

do not follow the right branch.
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Leaf nodes: Nodes 𝑡 ∈ 𝒯𝐿 = {⌊𝑇/2⌋ + 1, . . . , 𝑇} make a class prediction for each

point that falls into the leaf node.

We track the split applied at node 𝑡 ∈ 𝒯𝐵 with variables a𝑡 ∈ R𝑝 and 𝑏𝑡 ∈ R.

In this chapter, we restrict our model to univariate decision trees (like CART), and

so the hyperplane split at each node should only involve a single variable. This is

enforced by setting the elements of a𝑡 to be binary variables that sum to 1. We want

to allow the option of not splitting at a branch node. We use the binary variables

𝑑𝑡 to track which branch nodes apply splits, where 𝑑𝑡 = 1 if node 𝑡 applies a split,

and 𝑑𝑡 = 0 otherwise. If a branch node does not apply a split, then we model this by

setting a𝑡 = 0 and 𝑏𝑡 = 0. This has the effect of forcing all points to follow the right

split at this node, since the condition for the left split is 0 < 0 which is never satisfied.

This allows us to stop growing the tree early without introducing new variables to

account for points ending up at the branch node—instead we send them all the same

direction down the tree to end up in the same leaf node. We enforce this with the

following constraints:

𝑝∑︁
𝑗=1

𝑎𝑗𝑡 = 𝑑𝑡, ∀𝑡 ∈ 𝒯𝐵, (2.2)

0 ≤ 𝑏𝑡 ≤ 𝑑𝑡, ∀𝑡 ∈ 𝒯𝐵, (2.3)

𝑎𝑗𝑡 ∈ {0, 1}, ∀𝑗 ∈ [𝑝], 𝑡 ∈ 𝒯𝐵, (2.4)

where the second inequality is valid for 𝑏𝑡, since we have assumed that each x𝑖 ∈ [0, 1]𝑝,

and we know that a𝑡 has one element that is 1 if and only if 𝑑𝑡 = 1, with the remainder

being 0. Therefore, it is always true that 0 ≤ aT
𝑡 x𝑖 ≤ 𝑑𝑡 for any 𝑖 and 𝑡, and we need

only consider values for 𝑏𝑡 in this same range.

Next, we will enforce the hierarchical structure of the tree. We restrict a branch

node from applying a split if its parent does not also apply a split.

𝑑𝑡 ≤ 𝑑𝑝(𝑡), ∀𝑡 ∈ 𝒯𝐵 ∖ {1}, (2.5)
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where no such constraint is required for the root node.

We have constructed the variables that allow us to model the tree structure using

MIO; we now need to track the allocation of points to leaves and the associated errors

that are induced by this structure.

We introduce binary variables 𝑧𝑖𝑡 to track the points assigned to each leaf node,

where 𝑧𝑖𝑡 = 1 if point 𝑖 is in node 𝑡, and 𝑧𝑖𝑡 = 0 otherwise. We also introduce binary

variables 𝑙𝑡, where 𝑙𝑡 = 1 if leaf 𝑡 contains any points, and 𝑙𝑡 = 0 otherwise. We use

these binary variables together to enforce a minimum number of points at each leaf,

given by 𝑁min:

𝑧𝑖𝑡 ≤ 𝑙𝑡, ∀𝑡 ∈ 𝒯𝐵, (2.6)
𝑛∑︁

𝑖=1

𝑧𝑖𝑡 ≥ 𝑁min𝑙𝑡, ∀𝑡 ∈ 𝒯𝐵. (2.7)

We also force each point to be assigned to exactly one leaf:

∑︁
𝑡∈𝒯𝐿

𝑧𝑖𝑡 = 1, ∀𝑖 ∈ [𝑛]. (2.8)

Finally, we apply constraints enforcing the splits that are required by the structure

of the tree when assigning points to leaves:

aT
𝑚x𝑖 < 𝑏𝑚 +𝑀1(1− 𝑧𝑖𝑡), ∀𝑖 ∈ [𝑛], 𝑡 ∈ 𝒯𝐿, 𝑚 ∈ ℒ(𝑡), (2.9)

aT
𝑚x𝑖 ≥ 𝑏𝑚 −𝑀2(1− 𝑧𝑖𝑡), ∀𝑖 ∈ [𝑛], 𝑡 ∈ 𝒯𝐿, 𝑚 ∈ ℛ(𝑡), (2.10)

where 𝑀1 and 𝑀2 are sufficiently large constants such that the constraints are always

satisfied when 𝑧𝑖𝑡 = 0. We will discuss choosing values for these constants shortly,

but first note that the constraints (2.9) use a strict inequality. This is not supported

by MIO solvers, and so it must be converted into a form that does not use a strict

inequality. To do this we can add a small constant 𝜖 to the left-hand-side of (2.9) and
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change the inequality to be non-strict:

a𝑇
𝑚x𝑖 + 𝜖 ≤ 𝑏𝑚 +𝑀1 (1− 𝑧𝑖𝑡) , ∀𝑖 ∈ [𝑛], 𝑡 ∈ 𝒯𝐿, 𝑚 ∈ ℒ(𝑡). (2.11)

However, if 𝜖 is too small, this could cause numerical instabilities in the MIO

solver, so we seek to make 𝜖 as big as possible without affecting the feasibility of any

valid solution to the problem. We can achieve this by specifying a different 𝜖𝑗 for each

feature 𝑗. The largest valid value is the smallest non-zero distance between adjacent

values of this feature. To find this, we sort the values of the 𝑗th feature and take

𝜖𝑗 = min

{︂
𝑥
(𝑖+1)
𝑗 − 𝑥

(𝑖)
𝑗

⃒⃒⃒⃒
𝑥
(𝑖+1)
𝑗 ̸= 𝑥

(𝑖)
𝑗 , 𝑖 ∈ [𝑛− 1]

}︂
,

where 𝑥
(𝑖)
𝑗 is the 𝑖th largest value in the 𝑗th feature. We can then use these values

for 𝜖 in the constraint, where the value of 𝜖𝑗 that is used is selected according to the

feature we are using for this split:

a𝑇
𝑚(x𝑖 + 𝜖) ≤ 𝑏𝑚 +𝑀1 (1− 𝑧𝑖𝑡) , ∀𝑖 ∈ [𝑛], 𝑡 ∈ 𝒯𝐿, 𝑚 ∈ ℒ(𝑡). (2.12)

We must also specify values for the big-𝑀 constants 𝑀1 and 𝑀2. As mentioned

previously, we know that both a𝑇
𝑡 x𝑖 ∈ [0, 1] and 𝑏𝑡 ∈ [0, 1], and so the largest possible

value of a𝑇
𝑡 (x𝑖 + 𝜖) − 𝑏𝑡 is 1 + 𝜖max, where 𝜖max = max𝑗{𝜖𝑗}. We can therefore set

𝑀1 = 1 + 𝜖max. Similarly, we have the largest possible value of 𝑏𝑡 − a𝑇
𝑡 𝑥𝑖 is 1, and

so we can set 𝑀2 = 1. This gives the following final constraints that will enforce the

splits in the tree:

a𝑇
𝑚(x𝑖 + 𝜖) ≤ 𝑏𝑚 + (1 + 𝜖max) (1− 𝑧𝑖𝑡) , ∀𝑖 ∈ [𝑛], 𝑡 ∈ 𝒯𝐿, 𝑚 ∈ ℒ(𝑡), (2.13)

aT
𝑚x𝑖 ≥ 𝑏𝑚 − (1− 𝑧𝑖𝑡), ∀𝑖 ∈ [𝑛], 𝑡 ∈ 𝒯𝐿, 𝑚 ∈ ℛ(𝑡). (2.14)

The objective is to minimize the misclassification error, so an incorrect label pre-

diction has cost 1, and a correct label prediction has cost 0. We set 𝑁𝑘𝑡 to be the

number of points of label 𝑘 in node 𝑡, and 𝑁𝑡 to be the total number of points in node
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𝑡:

𝑁𝑘𝑡 =
∑︁

𝑖: 𝑦𝑖=𝑘

𝑧𝑖𝑡, ∀𝑡 ∈ 𝒯𝐿, 𝑘 ∈ [𝐾], (2.15)

𝑁𝑡 =
𝑛∑︁

𝑖=1

𝑧𝑖𝑡, ∀𝑡 ∈ 𝒯𝐿. (2.16)

We need to assign a label to each leaf node 𝑡 in the tree, which we denote with

𝑐𝑡 ∈ {1, . . . , 𝐾}. It is clear that the optimal label to predict is the most common of

the labels among all points assigned to the node:

𝑐𝑡 = argmax
𝑘∈[𝐾]

{𝑁𝑘𝑡}. (2.17)

We will use binary variables 𝑐𝑘𝑡 to track the prediction of each node, where 𝑐𝑘𝑡 =

1{𝑐𝑡 = 𝑘}. We must make a single class prediction at each leaf node that contains

points:
𝐾∑︁
𝑘=1

𝑐𝑘𝑡 = 𝑙𝑡, ∀𝑡 ∈ 𝒯𝐿. (2.18)

Since we know how to make the optimal prediction at each leaf 𝑡 using (2.17),

the optimal misclassification loss in each node, denoted 𝐿𝑡 is going to be equal to the

number of points in the node less the number of points of the most common label:

𝐿𝑡 = 𝑁𝑡 − max
𝑘∈[𝐾]
{𝑁𝑘𝑡} = min

𝑘∈[𝐾]
{𝑁𝑡 −𝑁𝑘𝑡}, (2.19)

which can be linearized to give

𝐿𝑡 ≥ 𝑁𝑡 −𝑁𝑘𝑡 −𝑀(1− 𝑐𝑘𝑡), ∀𝑡 ∈ 𝒯𝐿, 𝑘 ∈ [𝐾], (2.20)

𝐿𝑡 ≤ 𝑁𝑡 −𝑁𝑘𝑡 +𝑀𝑐𝑘𝑡, ∀𝑡 ∈ 𝒯𝐿, 𝑘 ∈ [𝐾], (2.21)

𝐿𝑡 ≥ 0, ∀𝑡 ∈ 𝒯𝐿, (2.22)

where again 𝑀 is a sufficiently large constant that makes the constraint inactive

depending on the value of 𝑐𝑘𝑡. Here, we can take 𝑀 = 𝑛 as a valid value.
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The total misclassification cost is therefore
∑︀

𝑡∈𝒯𝐿 𝐿𝑡, and the complexity 𝐶 of the

tree is the number of splits included in the tree, given by 𝐶 =
∑︀

𝑡∈𝒯𝐵 𝑑𝑡. Following

CART, we normalize the misclassification against the baseline accuracy, 𝐿̂, obtained

by simply predicting the most popular class for the entire dataset. This makes the ef-

fect of 𝛼 independent of the dataset size. This means the objective from problem (2.1)

can be written:

min
1

𝐿̂

∑︁
𝑡∈𝒯𝐿

𝐿𝑡 + 𝛼 · 𝐶. (2.23)

Putting all of this together gives the following MIO formulation for problem (2.1),

which we call the Optimal Classification Trees (OCT) model:

min
1

𝐿̂

∑︁
𝑡∈𝒯𝐿

𝐿𝑡 + 𝛼 · 𝐶 (2.24)

s.t. 𝐿𝑡 ≥ 𝑁𝑡 −𝑁𝑘𝑡 − 𝑛(1− 𝑐𝑘𝑡), ∀𝑡 ∈ 𝒯𝐿, 𝑘 ∈ [𝐾],

𝐿𝑡 ≤ 𝑁𝑡 −𝑁𝑘𝑡 + 𝑛𝑐𝑘𝑡, ∀𝑡 ∈ 𝒯𝐿, 𝑘 ∈ [𝐾],

𝐿𝑡 ≥ 0, ∀𝑡 ∈ 𝒯𝐿,

𝑁𝑘𝑡 =
∑︁

𝑖: 𝑦𝑖=𝑘

𝑧𝑖𝑡, ∀𝑡 ∈ 𝒯𝐿, 𝑘 ∈ [𝐾],

𝑁𝑡 =
𝑛∑︁

𝑖=1

𝑧𝑖𝑡, ∀𝑡 ∈ 𝒯𝐿,

𝐾∑︁
𝑘=1

𝑐𝑘𝑡 = 𝑙𝑡, ∀𝑡 ∈ 𝒯𝐿,

𝐶 =
∑︁
𝑡∈𝒯𝐵

𝑑𝑡,

aT
𝑚x𝑖 ≥ 𝑏𝑚 − (1− 𝑧𝑖𝑡), ∀𝑖 ∈ [𝑛], 𝑡 ∈ 𝒯𝐿, 𝑚 ∈ ℛ(𝑡),

aT
𝑚(x𝑖 + 𝜖) ≤ 𝑏𝑚 + (1 + 𝜖max)(1− 𝑧𝑖𝑡), ∀𝑖 ∈ [𝑛], 𝑡 ∈ 𝒯𝐿, 𝑚 ∈ ℒ(𝑡),∑︁

𝑡∈𝒯𝐿

𝑧𝑖𝑡 = 1, ∀𝑖 ∈ [𝑛],

𝑧𝑖𝑡 ≤ 𝑙𝑡, ∀𝑡 ∈ 𝒯𝐿,
𝑛∑︁

𝑖=1

𝑧𝑖𝑡 ≥ 𝑁min𝑙𝑡, ∀𝑡 ∈ 𝒯𝐿,
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𝑝∑︁
𝑗=1

𝑎𝑗𝑡 = 𝑑𝑡, ∀𝑡 ∈ 𝒯𝐵,

0 ≤ 𝑏𝑡 ≤ 𝑑𝑡, ∀𝑡 ∈ 𝒯𝐵,

𝑑𝑡 ≤ 𝑑𝑝(𝑡), ∀𝑡 ∈ 𝒯𝐵 ∖ {1},

𝑧𝑖𝑡, 𝑙𝑡, 𝑐𝑘𝑡 ∈ {0, 1}, ∀𝑖 ∈ [𝑛], 𝑘 ∈ [𝐾], 𝑡 ∈ 𝒯𝐿,

𝑎𝑗𝑡, 𝑑𝑡 ∈ {0, 1}, ∀𝑗 ∈ [𝑝], 𝑡 ∈ 𝒯𝐵.

This model as presented is in a form that can be directly solved by any MIO solver.

The difficulty of the model is primarily the number of binary variables 𝑧𝑖𝑡, which is

𝑛 · 2𝐷. Empirically we observe that we can find high-quality solutions in minutes for

depths up to 4 for datasets with thousands of points. Beyond this depth or dataset

size, the rate of finding solutions is slower, and more time is required.

There are three hyper-parameters that need to be specified: the maximum depth

𝐷, the minimum leaf size 𝑁min, and the complexity parameter 𝛼.

Improving MIO Performance using Warm Starts

MIO solvers benefit greatly when supplied an integer-feasible solution as a warm start

for the solution process. Injecting a strong warm start solution before starting the

solver greatly increases the speed with which the solver is able to generate strong

feasible solutions [17]. The warm start provides a strong initial upper bound on the

optimal solution that allows more of the search tree to be pruned, and it also provides

a starting point for local search heuristics. The benefit realized increases with the

quality of the warm start, so it is desirable to be able to quickly and heuristically find

a strong integer-feasible solution before solving.

We already have access to good heuristic methods for the MIO problem (2.24); we

can use CART to generate these warm start solutions. Given a solution from CART,

it is simple to construct a corresponding feasible solution to the MIO problem (2.24)

using the splits from CART to infer the values of the remaining variables in the MIO

problem.

45



Figure 2-4: Comparison of upper and lower bound evolution while solving MIO prob-
lem (2.24) with and without warm starts for a tree of depth 𝐷 = 2 for the Wine
dataset with 𝑛 = 178 and 𝑝 = 13.
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By design, the parameters 𝑁min and 𝛼 have the same meaning in CART and

in problem (2.24), so we can run CART with these parameters to generate a good

solution. We must then prune the splits on the CART solution until it is below the

maximum depth 𝐷 for the MIO problem to ensure it is feasible.

We can also use MIO solutions that we have previously generated as warm starts.

In particular, if we have a solution generated for a depth 𝐷, this solution is a valid

warm start for depth 𝐷+1. This is important because the problem difficulty increases

with the depth, so for larger depths it may be advantageous to run the MIO problem

with a smaller depth to generate a strong warm start.

To demonstrate the effectiveness of warm starts, Figure 2-4 shows an example of

the typical evolution of upper and lower bounds as we solve the MIO problem (2.24)

for the optimal tree of depth 2 on the “Wine” dataset, which has 𝑛 = 178 and 𝑝 = 13.

We see when no warm start is supplied, the upper bound decreases gradually until the

eventual optimal solution is found after 270 seconds. An additional 1, 360 seconds

are required to prove the optimality of this solution. When we inject a heuristic

solution (in this case, the CART solution) as a warm start, the same optimal solution

is found after just 105 seconds, and it takes an additional 230 seconds to prove

optimality. The total time required to find and prove optimality in this example
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decreases by a factor of 5 when the warm start is added, and the time taken to find

the optimal solution decreases by a factor of around 2.5, showing that using high-

quality warm start solutions can have a significant effect on the MIO solution times.

Additionally, we see that the optimal tree solution has an objective with roughly half

the error of the CART warm start, showing that the CART solutions can indeed

be far from optimality in-sample. Finally, we observe that the majority of the time

is spent in proving that the solution is optimal. A proof of optimality is good to

have for comparison to other methods, but is not necessarily required in practice

when evaluating a classifier (note that other methods make no claims as to their

optimality). It is therefore a reasonable option to terminate the solve early once the

best solution has remained unchanged for some time, because this typically indicates

the solution is indeed optimal or close to it, and proving optimality may take far more

time.

2.3 A Local Search Approach

In this section, we investigate and discuss limitations of the MIO-based approach

to solving the Optimal Classification Trees problem and use this insight to develop

a local-search heuristic for solving the problem that gives better solutions than the

MIO approach in a fraction of the time.

Limitations of the MIO approach

The MIO formulation for the Optimal Classification Trees problems as presented in

Section 2.2 can be implemented and passed to any mixed-integer optimization solver.

However, in our experience the problem is unlikely to solve very fast, and empirically

the solutions obtained after letting the solve run for long periods of time can be far

from optimality and offer only small improvements over heuristic solutions like those

from CART.

We illustrate this observation with an example using the “Banknote Authenti-

cation” dataset from the UCI Machine Learning Repository [77]. This dataset has
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𝑛 = 1372 points, 𝑝 = 4 dimensions, and 𝐾 = 2 classes, so is roughly of low-to-

moderate size and difficulty. We compared the performance of CART and OCT on this

dataset, measuring the final training error to understand how well each method can

solve Problem (2.1). We solved the OCT MIO problem using the Gurobi solver [56],

with the CART solution as a warm start for the solution process, and imposed a two

hour time limit for the solver to find improved solutions. Figure 2-5 shows the train-

ing accuracy of each method on this dataset as a function of the depth of the tree,

as well as the corresponding running time. Recall that the size of the MIO problem

increases with the maximum depth of the tree we are learning.

We can see that at depth 1, the solutions were identical, and the MIO approach

was able to prove optimality after around 10 seconds. At all other depths, no proof

of optimality was obtained, and in fact the best MIO lower bound on the training

error did not increase from zero after the two hour time limit, and so we have no

indication of how close to optimality these solutions might be. OCT was able to

improve upon the CART solution in three of the remaining depths, with the largest

improvement of about 3% at depth 3. There were no improvements at depths 4 and

6, and at depth 6, Gurobi did not even progress past the root node and begin the

branch and bound process within the two hour time limit, due to the sheer size of

the problem. In contrast, the CART solutions were found in under one second, so

the MIO approach took 5–6 orders of magnitude longer to find solutions that in some

cases offered small-to-moderate improvements, and importantly, offered no guarantee

that better performance was impossible. This motivates the question of whether

better performance is indeed possible, and also motivates a desire to find solutions

that improve upon CART in times that are more competitive with CART.

The key reason the MIO problem is slow to solve is the sheer number of variables

and constraints that arise in the formulation. In particular, the number of binary

variables grows very fast with the number of training points and the depth of the

tree; specifically there are 𝑛 · 2𝐷 binary variables 𝑧𝑖𝑡 to track the potential allocation

of each point 𝑖 to each leaf 𝑡. For example, there are 1372 · 26 = 87, 808 such binary

variables for the largest case in the“Banknote Authentication” example above, which
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Figure 2-5: Training accuracy (%) and running time for each method on “Banknote
Authentication” dataset.
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already proves hard to solve in hours. A typical real-world example might have 𝑛 in

the tens or hundreds of thousands and depths larger than 10, giving over 100 million

binary variables! Based on experiments with synthetically-generated data, we find

that doubling the number of these 𝑧𝑖𝑡 variables (by increasing the depth by 1 or by

doubling 𝑛) increases the MIO solve time by roughly an order of magnitude. This

makes it unlikely that an MIO-based solution approach would be able to scale to the

problem sizes that we would want to solve.

The natural way to resolve this scaling issue is to try to reduce the problem size.

One observation we can make is that the “core” decision variables that define a tree

are the split variables A = {a1, . . . , a⌊𝑇/2⌋} and b = {𝑏1, . . . , 𝑏⌊𝑇/2⌋}. Once we are

given these split variables, we can solve for the values of the remaining variables

and evaluate the error in closed-form, simply by dividing the points according to the

splits and then assigning the labels to each leaf using majority-rule. We can frame

this problem as follows:

min
A,b

error(A,b,X,y), (2.25)

where X = {x1, . . . ,x𝑛} and y = {𝑦1, . . . , 𝑦𝑛} are the training points and their labels,

and error is a function that evaluates the objective cost of the splits A and b on the

training data X and y.

Immediately, we can see that the number of variables in problem (2.25) is greatly
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reduced compared to problem (2.24); we only have to optimize over A ∈ {0, 1}𝑛×⌊𝑇/2⌋

and b ∈ R⌊𝑇/2⌋. Most importantly, the number of variables no longer depends on the

number of training points 𝑛. The complication comes from the non-linear function

error being embedded in the objective, which means we cannot solve it using stan-

dard MIO optimization methods. However, we would expect to solve this problem

very fast if we had a way of optimizing this function over the reduced decision space.

Optimization via local search

We will now present the algorithm we have developed for solving Problem (2.25).

This local search procedure iteratively improves and refines the current solution until

a local minimum is reached. This procedure is repeated from a number of different

starting points with the goal of finding many different local minima in the expectation

that the best of these is the global minimum, or very close to it.

We begin with some notation and a description of functions used in the presenta-

tion of the algorithm:

∙ T𝑡 denotes the subtree rooted at the 𝑡th node of a tree T;

∙ X𝒜 and y𝒜 denote the subsets of the training data X and y corresponding to

any index set 𝒜;

∙ shuffle(𝒜) randomizes the order of an index set 𝒜;

∙ nodes(T) returns a set containing the indices of all nodes in tree T;

∙ children(T) returns the two subtrees rooted at the lower and upper children of

the root node of tree T;

∙ minleafsize(T,X,y) returns minimum number of points contained in any leaf of

tree T given data X and y;

∙ loss(T,X,y) is a function that evaluates the objective cost of the tree T on data

X and y after the leaf predictions of T have been optimized to fit X and y.
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Algorithm 2.1 LocalSearch
Input: Starting decision tree T; training data X, y
Output: Locally optimal decision tree
1: repeat
2: errorprev ← loss(T,X,y)
3: for all 𝑡 ∈ shuffle(nodes(T)) do
4: ℐ ← {𝑖 : x𝑖 is assigned by T to a leaf contained in T𝑡}
5: T𝑡 ← OptimizeNodeParallel(T𝑡,Xℐ ,yℐ)
6: replace 𝑡th node in T with T𝑡

7: errorcur ← loss(T,X,y)

8: until errorprev = errorcur ◁ no further improvement possible
9: return T

For Optimal Classification Trees, the loss function corresponds to the objective of

Problem (2.24), which we can write as:

loss(T,X,y) =
1

𝐿̂
𝐿(T,X,y) + 𝛼 · complexity(T), (2.26)

where 𝐿 is the number of points among the data X, y that are misclassified by T

when the labels on the leaves are chosen according to the majority rule with data X

and y, 𝐿̂ is the baseline error on the training data, 𝛼 is the complexity parameter,

and complexity(T) is the number of splits in T.

The approach we take considers changing one node in the current solution at a

time. To do this, we simply re-optimize the split at this node so that it is locally

optimal. We loop through the nodes in a random order, re-optimizing the split at

each node, until we have looped through every node in the tree without making any

improvement. This tree is now a local minimum for Problem (2.25) with respect to

our search procedure, so we stop and begin the procedure again with a new tree.

This procedure is detailed in Algorithm 2.1, which depends on the supplementary

functions given in Algorithms 2.2 and 2.3.

The local search procedure given in Algorithm 2.1 depends on the function

OptimizeNodeParallel in Algorithm 2.2, which re-optimizes the root node of any

subtree T to be locally optimal for the given training data X and y. There are three

possible actions we take in this procedure to improve the root node. First, we can
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Algorithm 2.2 OptimizeNodeParallel
Input: Subtree T to optimize; training data X, y
Output: Subtree T with optimized parallel split at root
1: if T is a branch then
2: Tlower,Tupper ← children(T)
3: else
4: Tlower,Tupper ← new leaf nodes
5: errorbest ← loss(T,X,y) ◁ error of current root
6:
7: Tpara, errorpara ← BestParallelSplit(Tlower,Tupper,X,y)
8: if errorpara < errorbest then
9: T, errorbest ← Tpara, errorpara ◁ replace with parallel split

10: errorlower ← loss(Tlower,X,y)
11: if errorlower < errorbest then
12: T, errorbest ← Tlower, errorlower ◁ replace with lower child
13: errorupper ← loss(Tupper,X,y)
14: if errorupper < errorbest then
15: T, errorbest ← Tupper, errorupper ◁ replace with upper child
16: return T

consider replacing the current root node with a branch node that is locally optimal

for the given training data, which is found using the BestParallelSplit function.

The other options we consider are to delete the current node if it is a branch node,

and instead use either the lower or upper child in its place. We calculate the new loss

after performing each of these three subsitutions at the root node, and perform the

best of these if the resulting loss is lower than the current loss, otherwise we make no

changes to the root.

The function BestParallelSplit in Algorithm 2.3 finds the locally-optimal

parallel split to use at any root branch node, given the structures of the subtrees in

the lower and upper children are fixed. To do this, we follow a procedure similar in

nature to that used in the CART algorithm to exhaustively search all possible split

locations. In each dimension of the data, we sort the points and consider placing the

parallel split between each successive pair of points. For each split we consider, we

evaluate the loss of tree T with this split at the root and all other splits unchanged.

We take the split with the best such loss, which is thus a local optimum for the loss

function, since we considered every possible distinct parallel split.
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Algorithm 2.3 BestParallelSplit
Input: Lower and upper subtrees Tlower and Tupper to use as children of new split;

training data X, y
Output: Subtree with best parallel split at root; error of best tree
1: 𝑛, 𝑝 ← size of X
2: errorbest ← ∞
3: for 𝑗 = 1, . . . , 𝑝 do ◁ loop over all dimensions
4: values ← {𝑋𝑖𝑗 : 𝑖 = 1, . . . , 𝑛}
5: sort values in ascending order
6: for 𝑖 = 1, . . . , 𝑛− 1 do ◁ loop over all split placements
7: 𝑏 ← 1

2
(values𝑖 + values𝑖+1)

8: T ← branch node eT𝑗 x < 𝑏 with children Tlower,Tupper

9: if minleafsize(T) ≥ 𝑁min then ◁ check feasibility
10: error ← loss(T,X,y)
11: if error < errorbest then ◁ save split if better
12: errorbest ← error
13: Tbest ← T
14: return Tbest, errorbest

As mentioned earlier, we repeat the local search procedure for a number of starting

trees, and take the tree with the best loss as the final solution. This allows us to

better explore the search space for the global minimum and avoid getting trapped in

local minima. For the starting trees, we generate trees using a similar method as for

Random Forests [29]. Namely, the trees are generated as normal for CART, except

at each stage of the tree growing process we are only allowed to consider a random

subset of the features to split on. We have found that √𝑝 is a good size for this

random subset, similar to Random Forests. Note that unlike Random Forests, we do

not take bootstrap sample of the training points to ensure that the trees we generate

satisfy the minimum leaf size when applied to the original training set, and thus are

feasible starting points.

This approach using Random Forests to generate starting points works well, since

this produces trees that are of high quality individually, yet there is still significant

variance across the set of trees generated from this process. CART, as a deterministic

algorithm, would not be well-suited for this task.

We conclude by observing that the local search for each starting solution is inde-

pendent of all other starting points, and so the search process is trivially parallelizable
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across the starting solutions. This means the speed increases approximately linearly

with the number of cores available, allowing for very large speedups due to paral-

lelization.

Complexity analysis of local search

We will now analyze the complexity of the local search procedure and show that it

runs efficiently even in the worst case, and is not significantly more expensive than

classical heuristics for parallel decision tree construction like CART.

First, we observe that we require the points in sorted order for each feature in the

BestParallelSplit function in Algorithm 2.3. This order does not change for the

duration of the local search procedure, so we can simply presort the data in each of

the 𝑝 features for a cost of 𝑂(𝑛𝑝 log 𝑛) as the first step in the algorithm.

We now analyze the cost of BestParallelSplit. For each feature of the data,

we consider placing the split between each pair of points and evaluating the mis-

classification error for each split. However, we do not need to calculate the error

from scratch at each split position, assuming that the error of first tree considered

is available. We search the splits in sorted order, and so we can update the error

incrementally by simply switching which branch the next point is assigned to and up-

dating the misclassification counts accordingly. This means that calculating the error

inside the loop of BestParallelSplit has cost of just 𝑂(𝐾) using the majority

rule, thus the total cost of the loop is 𝑂(𝑛𝑝𝐾) for evaluating the error of each split

location between 𝑛 points in each of the 𝑝 features.

Next, we consider the OptimizeNodeParallel function in Algorithm 2.2. This

first calculates the errors for the current, lower and upper subtrees, followed by run-

ning BestParallelSplit. Observe that the upper subtree is the same as the first

tree considered inside BestParallelSplit, so we can pass the error of this upper

tree into the function and avoid recalculating it as we assumed, meaning BestParal-

lelSplit has a total cost of 𝑂(𝑛𝑝𝐾). We will also assume for now that the errors of

the current, lower and upper subtrees are all provided to OptimizeNodeParallel,

so the total cost of this function is 𝑂(𝑛𝑝𝐾).
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Finally, we consider the cost of the overall local search function in Algorithm 2.1.

Inside the innermost loop, we calculate the assignment of points to leaves in the

tree, which takes 𝑂(𝑛𝑇 ) time, where 𝑇 is the number of nodes in the tree, since

each point can have 𝑂(𝑇 ) tests when determining which leaf contains it. We then

run OptimizeNodeParallel for cost 𝑂(𝑛𝑝𝐾) and update the tree T and current

error at cost 𝑂(𝑇 ). We also assumed the error of the current, lower and upper

subtrees were made available to OptimizeNodeParallel, which can be obtained

by calculating the assignment of points to leaves for each of the subtrees, again

in 𝑂(𝑛𝑇 ) time, and then calculating the resulting misclassification cost using the

majority rule at cost 𝑂(𝐾𝑇 ). This means the total cost for a single iteration of this

loop is 𝑂(𝑛𝑝𝐾 + 𝑛𝑇 +𝐾𝑇 ) = 𝑂(𝑛𝑝𝐾 + 𝑛𝑇 ) under the assumption that 𝑛≫ 𝐾.

At each iteration of the local search, we calculate the error once for cost 𝑂(𝑛𝑇 +

𝐾𝑇 ) before running this loop over each node in the tree, which gives an iteration cost

of 𝑂(𝑛𝑇 +𝐾𝑇 ) + 𝑇 ·𝑂(𝑛𝑝𝐾 + 𝑛𝑇 ) = 𝑂(𝑛𝑝𝐾𝑇 + 𝑛𝑇 2).

However, we can improve the runtime of this loop as follows. Suppose that we

exit the loop after the first improvement we make, and then start the next local

search iteration from scratch. This means that the tree is unchanged for the duration

of the local search iteration, and so we can precompute the errors and point-to-leaf

assignments of all subtrees in the tree T before the loop, at a cost of 𝑂(𝑛𝑇 ) for

the assignments, and 𝑂(𝐾𝑇 ) for each of the 𝑂(𝑇 ) error calculations, for a total of

𝑂(𝑛𝑇 + 𝐾𝑇 2). This reduces the cost of the inner loop iteration to just 𝑂(𝑛𝑝𝐾),

making the total cost of a local search iteration 𝑂(𝑛𝑇 + 𝐾𝑇 2) + 𝑇 · 𝑂(𝑛𝑝𝐾) =

𝑂(𝑛𝑝𝐾𝑇 ), since the number of nodes in the tree is at most 𝑂(𝑛) with one point per

leaf. This optimization has therefore removed the second term from the runtime.

If there is no penalty on complexity, 𝛼 = 0, we can bound the number of local

search iterations. In this case, the error is just the misclassification score which is

integral, non-negative, and bounded above by 𝑛. Each iteration strictly decreases the

error, so this implies at most 𝑛 iterations can occur before termination. This means

the total cost of the local search procedure for a single starting solution is 𝑂(𝑛2𝑝𝐾𝑇 ).

We conduct this for a constant number 𝑅 of random restarts, which does not change

55



the complexity of the local search procedure.

The cost of generating a random starting tree is the same as that of generating a

CART tree, which is 𝑂(𝑛𝑝𝐾𝑇 ): CART uses a function similar to BestParallel-

Split as the innermost unit of work at a cost of 𝑂(𝑛𝑝𝐾). This is run at each node

in the tree, for a total cost of 𝑂(𝑛𝑝𝐾𝑇 ).

The overall cost of the OCT algorithm is therefore 𝑂(𝑛𝑝 log 𝑛) for the presorting,

𝑂(𝑛𝑝𝐾𝑇 ) for generating the starting solutions, and 𝑂(𝑛2𝑝𝐾𝑇 ) for the local search.

This final step dominates giving a total cost of 𝑂(𝑛2𝑝𝐾𝑇 ). The cost of CART is just

𝑂(𝑛𝑝 log 𝑛) for the presorting and 𝑂(𝑛𝑝𝐾𝑇 ) for generating the tree for a total cost

of 𝑂(𝑛𝑝(𝐾𝑇 + log 𝑛))

In the absolute worst case, each split in the tree would separate a single point only,

and so the number of nodes 𝑇 would be 𝑂(𝑛), giving a worst-case cost of 𝑂(𝑛3𝑝𝐾).

Under this worst case, the cost of CART would be 𝑂(𝑛2𝑝𝐾), and so the additional

power of OCT increases the cost simply by a factor of 𝑛.

A set of more realistic assumptions for practical use is that the number of nodes

in the tree would be 𝑂(log 𝑛) and the number of local search iterations required is

also 𝑂(log 𝑛). Under this scenario, the cost of OCT is 𝑂(𝑛𝑝𝐾 log2 𝑛) and the cost

of CART is 𝑂(𝑛𝑝𝐾 log 𝑛), and so OCT is only more expensive by a factor of log 𝑛.

Empirically we have found that the number of local search iterations required remains

almost constant as the number of points increases, and therefore assuming the number

of iterations to be 𝑂(log 𝑛) is realistic and perhaps even conservative.

Does the local search procedure work?

We demonstrate the speed and effectiveness of this local-search approach by revisiting

the earlier example that used the “Banknote Authetication” dataset. Figure 2-6 shows

the results when we use the local-search approach to solve the OCT problem with

100 random restarts. We immediately see that the local-search approach generates

solutions of much higher quality than both CART and the MIO-based OCT at the

higher depths, and even reaches 0% error at depth 6. At depths 3 and higher, there

is clear evidence that the solutions generated by the MIO approach were not optimal,
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Figure 2-6: Training accuracy (%) and running time for each method on “Banknote
Authentication” dataset.
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as there is clearly great room for improvement. Finally, it takes around one second

in the largest cases to construct and optimize all 100 of the random restarts using

the local search, so the method runs in times within 1–2 orders of magnitude of

CART, and is around 4 orders of magnitude faster than the MIO approach, which

makes it a much more powerful and practical alternative to CART than the MIO

approach. Finally, we note that these runtimes were measured using just a single CPU

core. Since the performance increases linearly with the number of cores, running the

same experiments on a typical machine with 16 cores available would give runtimes

approximately the same as CART.

2.4 A Method for Tuning Hyperparameters

In this section, we present an approach for tuning the hyperparameters in the Op-

timal Classification Trees problem that we have found empirically to give strong

performance out-of-sample.

The hyperparameters in the OCT problem are the complexity parameter 𝛼, the

maximum depth of the tree 𝐷, and the minimum leaf size 𝑁min. Varying any or all of

these parameters changes the degree to which the tree is optimized to fit the training

data:
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∙ The complexity parameter controls the tradeoff between the training error and

the number of splits in the tree, ensuring that increasing the number of splits in

the tree leads to a corresponding reduction in training error that is sufficiently

large;

∙ The maximum depth controls the number of sequential splits that can be used

to classify any point, to make sure the decision rules are not too complicated;

∙ The minimum leaf size controls the degree to which the tree can be fit to smaller

groups of training points; increasing this parameter leads the tree to focus on

the training points as clusters rather than the individual points.

In order to create a tree that performs well out-of-sample, we need to ensure that

we do not overfit to the training data, which we can achieve by tuning the values of

the hyperparameters to arrive at the “right-sized tree”. This is typically conducted by

reserving some of the training data as a validation set, and using the performance of

the trained model on the validation set to guide the choice of hyperparameter values.

In this sense, the performance on the validation set is used as a proxy for the true

out-of-sample performance, and we expect the hyperparameters that give the best

performance on the validation set to also perform well on new data.

A standard approach to tuning hyperparameters is to use an exhaustive grid-

search, where every possible combination of the hyperparameters is used to train

a model on the training set. We then evaluate each model on the validation set

and choose the combination of hyperparameters that gave the model with the best

performance. This approach works well for hyperparameters that take discrete values

over a small range, such as the maximum depth 𝐷, which is typically from 1–15.

However, if the hyperparameter has a large range or is continuous (like the complexity

parameter), it is not feasible (or perhaps even possible) to search every possible value.

One potential remedy is to discretize the range of possible values and select the best

from this set. The quality of a tuned value is therefore likely to depend on the

granularity of the discretization, with more precise values requiring a finer mesh of

values.
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Fortunately, despite the complexity parameter being continuous-valued, it has a

discrete effect on the tree. Namely, varying the complexity parameter with all other

hyperparameters fixed changes the number of nodes in the tree; the maximum number

of nodes is achieved with 𝛼 = 0, and increasing 𝛼 from here will reduce the number of

nodes in the tree. For each tree, there is a corresponding interval for 𝛼 from which any

value will generate this tree. We can therefore discretize the range of 𝛼 intelligently

using these intervals and only test the “critical” values of 𝛼, avoiding any wasted effort

in testing values for 𝛼 that would give trees we have already found.

This intelligent approach to discretization is the basis for the cost-complexity prun-

ing used by CART [25]. This procedure first generates a tree with 𝛼 = 0, then prunes

the splits of the tree one-by-one in order of strength to generate a decreasing sequence

of trees. Next, the tree with the best performance on the validation set is identified,

and the range of 𝛼 values that would give rise to this tree is determined. Finally, the

midpoint of this interval is selected as the tuned value for 𝛼.

We will now reproduce the details of the cost-complexity pruning algorithm. At

each step in the pruning process, we need to identify the weakest of the branch nodes

in the tree to prune and replace with a leaf node. Given a tree T, we let 𝑅(T𝑡) be the

misclassification error of the 𝑡th branch node, complexity(T𝑡) be the number of splits

in the subtree rooted at the 𝑡th branch node, and 𝑅(𝑡) be the misclassification error

that would be realized if the 𝑡th branch node was replaced with a leaf. The change

in objective function by replacing the 𝑡th branch node with a leaf is therefore

𝑅(𝑡)⏟ ⏞ 
leaf error

− [𝑅(T𝑡) + 𝛼 · complexity(T𝑡)]⏟  ⏞  
branch error

. (2.27)

This substitution will improve the objective if (2.27) is negative, or equivalently

if

𝛼 >
𝑅(𝑡)−𝑅(T𝑡)

complexity(T𝑡)
, 𝑔(𝑡). (2.28)

The weakest branch node in the tree will be the one with the smallest value of 𝑔(𝑡),

as this is the first node that will be replaced as we increase the complexity penalty
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Algorithm 2.4 Prune
Input: Starting decision tree T
Output: Vector 𝛼 of critical values for complexity parameter; vector v of corre-

sponding validation errors for each critical value
1: 𝛼1 ← 0
2: 𝑣1 ← 𝑉 (T)
3: 𝑖 ← 1
4: while complexity(T) > 0 do
5: 𝑖 ← 𝑖+ 1
6: 𝛼𝑖 ← ∞
7: for all 𝑡 ∈ branches(T) do
8: 𝑎 ← 𝑅(𝑡)−𝑅(T𝑡)

complexity(T𝑡)

9: if 𝑎 < 𝛼𝑖 then
10: 𝑡 ← 𝑡
11: 𝛼𝑖 ← 𝑎

12: replace branch node 𝑡 in T with leaf node
13: 𝑣𝑖 ← 𝑉 (T)
14: return 𝛼,v

Algorithm 2.5 TuneCP
Input: Starting decision tree T
Output: Tuned value of 𝛼 that minimizes validation error
1: 𝛼,v ← Prune(T) ◁ Generate sequence of pruned trees
2: 𝑖 ← argmin𝑗 𝑣𝑗 ◁ Find interval with minimal error
3: return 1

2
(𝛼𝑖 + 𝛼𝑖+1) ◁ Return midpoint of interval

𝛼. We therefore identity 𝑡 = argmin𝑡 𝑔(𝑡) and replace this node with a leaf, and

then continue pruning from the beginning. At each step in the process, we track the

validation error of the current tree T, denoted by the function 𝑉 (T), and the current

critical value of 𝛼. This procedure is detailed in Algorithm 2.4.

Finally, we identify the tree with the smallest validation error, and use the cor-

responding critical values of 𝛼 to determine the final tuned value. Algorithm 2.5

describes this process.

Figure 2-7 demonstrates the cost-complexity pruning process as applied to a tree

trained on the “Breast Cancer Wisconsin” dataset from the UCI Machine Learning

Repository [77].

We might simply use the same cost-complexity pruning approach to tune the value
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Figure 2-7: Example of pruning process following Algorithm 2.4 on the “Breast Cancer
Wisconsin” dataset. The starting tree in Figure 2-7a has the largest complexity and
lowest training error. In each step of the pruning process, the weakest split in the
tree is identified using Equation (2.28) and then replaced with a leaf. Pruning this
split causes the complexity to drop and the training error to increase. Eventually we
arrive at a tree that is just a single root node. For each tree in this pruning sequence
we also calculate the corresponding error on the validation set. Our goal is to choose
the complexity parameter 𝛼 that induces the right-sized tree, which is traditionally
done by choosing the 𝛼 that would have led to the tree with the smallest validation
error, which is demonstrated by the process in Algorithm 2.5.
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of 𝛼 in the OCT model, but we have found empirically that this method does not

lead to tuned values that perform well on new data. To demonstrate this, Figure 2-8

shows results of applying cost-complexity pruning to OCT trees on the same “Breast

Cancer Wisconsin” dataset from Figure 2-7. Both plots correspond to OCT trees

from different starting solutions that had 100% in-sample accuracy when trained

with 𝛼 = 0. These plots show the validation error of the pruned tree as a function

of the complexity parameter 𝛼, with each horizontal line in the plot corresponding

to one of the trees in the pruning sequence, and the endpoints of this line identifying

the range of values for 𝛼 that lead to this tree. In order to determine the tuned value

of 𝛼, we want to find the value that minimizes the validation error on these plots.

Comparing the pruning curves in Figures 2-8a and 2-8b, we immediately see that

the curves are significantly different. Despite both OCT trees having the same perfect

in-sample accuracy, the value of 𝛼 that minimizes the validation error is different for

each tree, and in fact there is no overlap between the minimizing values of 𝛼 for

each tree. There are often many possible high-quality solutions that can arise when

training the model with 𝛼 = 0, because the complexity of the tree is not penalized. We

could get significantly different values for the tuned value of 𝛼 depending on which of

these optimal trees we select as the tree for pruning. This makes the cost-complexity

pruning an unstable procedure with high variance in the tuned values of 𝛼.

If we consider the curve for the tree in Figure 2-8b, we see there are two intervals

in which the validation error reaches its minimum, raising the question of which

of these intervals we should select. Another problem is that the validation error

is not very smooth as a function of 𝛼, and even after identifying the interval that

minimizes the validation error, we still have to select a single value as the final answer.

Traditionally the midpoint of the interval is taken to be the final value, however there

is little indication that choosing the midpoint is the best choice for the true minimizer,

especially if the interval is large.

These problems in combination lead to estimates for the optimal value of 𝛼 that

have inherently high variance, due both to the uncertainty in which tree will be

selected as the basis for pruning, and also the lack of granularity when selecting the
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Figure 2-8: An example showing the instability of cost-complexity pruning with two
OCT trees trained on the “Breast Cancer Wisconsin” dataset. Both trees have 100%
in-sample accuracy when the complexity parameter is zero. The plots show the prun-
ing curve generated by each tree using cost-complexity pruning. Despite having the
same perfect in-sample accuracy, the pruning curves are significantly different and
give different predictions for the value of the complexity parameter that minimizes
the validation error.
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(b) 2nd OCT tree
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𝛼 with the best validation performance. As a result, a procedure that generates trees

having used this approach to tune the value of 𝛼 will have high variance and thus the

trees it generates will have reduced ability to perform out-of-sample.

The instability in the cost-complexity pruning procedure for CART was observed

by Breiman [27], alongside many other unstable methods. He proposed an approach

for stabilizing such unstable procedures in the context of best-subset selection by

perturbing the data many times and averaging the results of the models fit to each

perturbed dataset. Similar approaches were later applied in the context of deci-

sion trees to give Bagging [26], Arcing [28] (now known as boosting), and Random
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Forests [29]. However, these approaches achieved stability by averaging the results of

many decision trees rather than providing a stable approach for producing a single

decision tree. As Breiman [27] noted:

An interesting research issue we are exploring is whether there is a more

stable single-tree version of CART.

To resolve this instability in decision tree training, we now present batch cost-

complexity pruning, an approach that reduces the variance in the tuning process for

OCT. This approach resolves the question of which tree to use as the basis for pruning

by selecting all of the high-quality trees generated in the local search, and in doing

so, smoothens the estimates of validation error as a function of 𝛼, enabling us to

obtain a higher-precision estimate for the value of 𝛼 that maximizes performance on

the validation set.

The key idea behind the batch cost-complexity pruning method is using multiple

trees together to conduct the pruning procedure. From the trees generated during

the local search process, we select the 𝑘 trees with the best training error (empirically

we have found setting 𝑘 = 𝑛/10 gives the best results, i.e., selecting the best 10%

of the trees). For each of the trees in this subset, we conduct the standard cost-

complexity pruning process, using Prune from Algorithm 2.4, and construct the

curve of validation error as a function of complexity parameter:

𝑓𝑗(𝛼) =

|𝛼𝑗 |∑︁
𝑖=1

(𝑣𝑗𝑖 − 𝑣𝑗𝑖−1)1{𝛼 ≥ 𝛼𝑗
𝑖}, (2.29)

where 𝛼𝑗 and v𝑗 are the results of the Prune function on the 𝑗th tree, and we take

𝑣𝑗0 = 0 for convenience of notation.

We then average the curves of all 𝑘 trees to obtain a single smoothed curve of

mean validation error as a function of complexity parameter:

𝑓(𝛼) =
1

𝑘

𝑘∑︁
𝑗=1

𝑓𝑗(𝛼). (2.30)
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Algorithm 2.6 BatchTuneCP
Input: Vector 𝑡𝑟𝑒𝑒𝑠 of solutions from local search; batch size 𝑘
Output: Best validation error; tuned value of complexity parameter
1: Sort 𝑡𝑟𝑒𝑒𝑠 by training error
2: for 𝑗 = 1, . . . , 𝑘 do
3: 𝛼𝑗,v𝑗 ← Prune(𝑡𝑟𝑒𝑒𝑠𝑗)
4: 𝑓𝑗(𝛼) ←

∑︀|𝛼𝑗 |
𝑖=1 (𝑣

𝑗
𝑖 − 𝑣𝑗𝑖−1)1{𝛼 ≥ 𝛼𝑗

𝑖}
5: 𝑓(𝛼) ← 1

𝑘

∑︀𝑘
𝑗=1 𝑓𝑗(𝛼)

6: 𝑣best ← min𝛼 𝑓(𝛼)
7: 𝒜 ← {𝛼̂ : 𝛼̂ ∈ argmin𝛼 𝑓(𝛼)} ◁ All function minimizers
8: 𝛼best ← 1

2
(min𝛼∈𝒜 𝛼 +max𝛼∈𝒜 𝛼) ◁ Midpoint of minimizers

9: return 𝑣best, 𝛼best

Figure 2-9: Tuning results using batch pruning on “Breast Cancer Wisconsin” dataset.
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We then proceed to identify the minimizing range of 𝛼 values for this function

and use the midpoint of this range as the final tuned value in the same way as for

standard cost-complexity pruning. The full algorithm is given in Algorithm 2.6.

We will now illustrate the advantages of this algorithm on the same example as

before. Figure 2-9 shows the batch pruning curve for the same “Breast Cancer Wis-

consin” dataset as in Figure 2-8. We immediately see that the curve is a lot smoother

and has a more obvious minimizing value. To make this comparison clearer, Figure 2-

10 compares the curves generated by the standard and batch pruning methods in the

region where the curves are minimized. We can see that the batch pruning curve has

a well-defined minimizing point around 0.008, whereas the standard pruning curve

indicates the minimizer would be around 0.004 if using the first tree, and anywhere

from 0.006 to 0.042 for the second tree. This example shows the power of the batch
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Figure 2-10: Comparison of pruning methods on “Breast Cancer Wisconsin” dataset
in the region where validation error is minimized.
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Algorithm 2.7 Tune
Input: Maximum depth of tree 𝐷max; batch size 𝑘
Output: Tuned value for complexity parameter; tuned value for depth
1: 𝑣best ← ∞
2: for 𝐷 = 1, . . . , 𝐷max do
3: T ← decision tree trained with maximum depth 𝐷
4: 𝛼, 𝑣 ← BatchTuneCP(T, 𝑘)
5: if 𝑣 < 𝑣best then
6: 𝑣best ← 𝑣
7: 𝛼best ← 𝛼
8: 𝐷best ← 𝐷

9: return 𝛼best, 𝐷best

pruning process in reducing the uncertainty in the pruning process. By combining

the pruning of multiple high-quality trees, we are able to zero in on a very precise

estimate for the optimal value of 𝛼.

A procedure for tuning all hyperparameters

The batch cost-complexity pruning procedure that we have presented is a powerful

method for tuning the value of 𝛼, and we will now present a method for tuning all of

the hyperparameters in the OCT model that takes advantage of this batch process.

This method simply embeds the batch pruning inside an exhaustive grid search over

the remaining parameters. The full procedure is given in Algorithm 2.7.
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In Algorithm 2.7, we only tune the complexity parameter 𝛼 and the depth 𝐷.

We have found empirically that there is little advantage to be gained in tuning the

minimum leaf size 𝑁min; the out-of-sample performance is largely the same if we

simply fix 𝑁min = 1, and so it is unlikely that tuning this parameter will be worth

the additional cost. However, it is trivial to modify Algorithm 2.7 to tune 𝑁min by

adding another outer loop over the candidate values for this parameter.

As mentioned earlier, we have found empirically that 𝑘 = 𝑛/10 is a good batch

size to use for this validation process, and leads to tuned values that perform well

out-of-sample across a wide range of problems.

2.5 Experiments with Synthetic Datasets

In this section, we examine the performance of Optimal Classification Trees on a

variety of synthetically-generated datasets in order to understand how effective the

method is at discovering the underlying ground truth in a dataset whose structure is

in fact described by a decision tree.

Experimental Setup

The experiments we conduct are adaptations of the experiments by Murthy and

Salzberg [90]. These experiments use a single decision tree as the ground truth to

generate datasets, and then different methods are used to induce decision trees on

these datasets and are then compared to the ground truth tree to evaluate perfor-

mance. To construct the ground truth, a decision tree of a specified depth is first

created by choosing splits at random. The leaves of the resulting tree are then labeled

such that no two leaves sharing a parent have the same label, otherwise this parent

node could simply be replaced with a leaf of the same label without affecting the

predictions of the overall tree.

The training and test datasets are created by generating each x𝑖 as a uniform

random vector, and then using the ground truth tree to assign the corresponding

label to the point. The size of the training set is specified by the experiment, and the
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size of the test set is always 2𝐷𝑡𝑟𝑢𝑒 ·2000, where 𝐷𝑡𝑟𝑢𝑒 is the depth of the ground truth

tree as specified by the particular experiment. 25% of the training set is reserved for

validation purposes in order to tune the complexity parameter 𝛼 and the maximum

depth 𝐷 using the procedure in Algorithm 2.7.

In order to determine the ability of each method to learn the true model described

by the data, we record three measures of tree quality in all experiments:

∙ Out-of-sample accuracy: accuracy on the test set.

∙ True discovery rate (TDR): the proportion of splits in the ground truth tree

that are also present in the generated tree. This measures the ability of the

method to recover the true splits from the data.

∙ False discovery rate (FDR): the proportion of splits in the generated tree that

are not present in the ground truth tree. This measures the amount of noise in

the generated tree.

For each experiment, 400 random trees are generated as different ground truths,

and training and test set pairs are created using each tree. The quality measures are

calculated over all 400 instances of the problem, and in the figures we present the

means of each measure with the standard error indicated by the error ribbon around

each line.

In these experiments we compare our OCT method to the standard CART heuris-

tic. Note that [90] found that C4.5 and CART gave near-identical results for all

experiments they conducted and reported only the C4.5 results, so our results for

CART should also be similar to those that would be obtained using C4.5.

Each experiment varies one parameter while holding all others constant. Unless

otherwise specified, the experiments are run with 𝑛 = 1000 training points in 𝑝 = 5

dimensions and 𝐾 = 2 classes, the ground truth trees are depth 𝐷 = 4, there is no

noise added to the training data, and OCT is run with 1000 random restarts.
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Figure 2-11: Synthetic experiments showing the effect of training set size.
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Implementation Details

The Optimal Classification Tree method as detailed in Section 2.3 was implemented

in the Julia programming language, which is a high-level, high-performance dynamic

programming language for technical computing [21]. We used Algorithm 2.7 to tune

the hyperparameters.

For testing the performance of CART, we used the rpart package [110] in the

R programming language [106]. The hyperparameters 𝑁min and 𝛼 correspond to the

parameters minbucket and cp. As for OCT, minbucket was set to 1, and the cp was

tuned using standard cost-complexity pruning as described in Section 2.4.

The effect of the amount of training data

The first experiment investigates the effect of the amount of training data relative to

the complexity of the problem. Figure 2-11 shows a summary of the results. We see

that both methods increase in out-of-sample accuracy as the training size increases,

approaching 100% accuracy at the higher sizes. In all cases, OCT has higher accuracy

than CART on training sets of the same size. For smaller training sets, the difference

is about 1–3%, and this difference shrinks as the training set size increases. This

shows that OCT performs stronger in data-poor regimes, while CART is able to

eventually achieve comparable accuracies if supplied enough data. This offers clear
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Figure 2-12: Synthetic experiments showing the effect of number of features.
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evidence against the notion that optimal methods tend to overfit the training data in

data-poor scenarios; in fact the optimal method performs stronger. The TDR of both

methods increases as the training size increases, indicating that it is easier to recover

the truth with more training data. OCT has a small but significant advantage in

TDR of 2–5% over CART at all but the largest sizes. The biggest difference between

the methods is in the FDR. As the training set size increases, CART’s FDR hovers

between 40–50%, despite the increasing out-of-sample accuracy and TDR. This means

that even though the CART trees are performing increasingly well for prediction, they

are not improving their interpretability with more data, as around half of the splits

in the trees generated are unrelated to the true data generation process. In stark

contrast, the FDR of OCT falls significantly as the training size increases, leveling

out at 10–15%. This demonstrates that OCT is much better able to identify the

whole truth, and nothing but the truth, in the data.

The effect of dimensionality

The second experiment considers the effect of the dimensionality of the problem,

and the results are shown in Figure 2-12. We see that both methods lose accuracy

as the problem dimension increases, reinforcing our intuition that the problem is

more difficult at higher dimensions. At all dimensions, OCT has significantly higher

accuracy than CART, and this difference grows from 1% at low dimensions to around
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Figure 2-13: Synthetic experiments showing the effect of number of classes.
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2% at higher dimensions. The TDR shows the same trend as the accuracy, decreasing

as the problem difficulty increases, with OCT outperforming CART by about 3–8%.

Again, there is a significant difference in the FDR of each methods. CART has an

FDR around 35–40%, while OCT is less than half this at around 15%, meaning the

trees generated by OCT will be much more useful for interpretation. Finally, we note

that the highest dimension we tested was 𝑝 = 1000, the same as the number of training

points, 𝑛 = 1000, showing that OCT is able to perform well in a high-dimensional

setting.

The effect of the number of classes

The third experiment considers the effect of the number of classes in the classification

problem on the performance of each method. Figure 2-13 shows the results of this

experiment. The out-of-sample accuracy of CART decreases slightly as the number

of classes increases, whereas the accuracy of OCT remains nearly constant. This

is an interesting result, because it seems to indicate that the greedy approach used

by CART is better suited to binary classification problems, and does not transfer

perfectly to multi-class problems. OCT improves upon the TDR of CART by 3–5%,

and more than halves the FDR, echoing the results of the previous experiments.
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Figure 2-14: Synthetic experiments showing the effect of number of random restarts.
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The effect of the number of random restarts

The fourth experiment measures the performance of OCT as a function of the number

of random restarts used in the local search. The results are shown in Figure 2-14. We

see that the number of random restarts has a large effect on the accuracy at first, but

after around 100–1000 restarts the rate of improvement diminishes; the performance

with 1000 and 100000 restarts is very close, with out-of-sample accuracies of 99.0%

and 99.1%, respectively. The TDR is similar, as it increases initially, but eventually

levels out. The trend is most apparent in the FDR, which decreases rapidly until 1000

restarts, where it is about half of CART’s FDR, and then decreases more slowly with

more restarts. Together, these results seem to indicate that the minimum number

of restarts we should be using is around 100–1000, as this is where the rates of

improvement begin to decrease. After this point, the performance still improves with

additional restarts, but at a much slower rate, so it may not be as worthwhile to

continue training after this point, depending on the application.

The effect of noise in the training data

The fifth experiment considers the effect of adding noise to the features of the training

data. We introduce noise by selecting a random 𝑓% of the training points and to

each of these adding random noise 𝜖 ∼ 𝑈(−0.1, 0.1) to every feature, where 𝑓 is the
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Figure 2-15: Synthetic experiments showing the effect of feature noise.
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parameter of the experiment. Figure 2-15 shows the impact of increasing levels of this

feature noise in the training data. As we would expect, the accuracies of each method

decrease as the level of noise increases. At all levels of noise, OCT has accuracies that

are 1–1.5% higher than CART. Even at the highest level of noise, where 25% of the

training data are perturbed in all features by up to 10%, OCT has an out-of-sample

accuracy of 98.4% and is significantly higher than CART, countering the idea that

optimal methods are less robust to noise than current heuristic approaches due to

problems of overfitting. Similar to the accuracy, the TDR decreases as the noise

increases, but OCT is again able to better find the truth in the noise, having a 4–5%

improvement in TDR. The FDR increases slightly for both methods with noise, as it

becomes harder to extract only the truth from the data, but the FDR of CART is

again roughly twice that of OCT.

The final experiment also examines the impact of adding noise to the training data,

but this time to the labels rather than the features. Noise was added to the training

set flipping the labels of a random 𝑓% of the points. Figure 2-16 shows the impact

of increasing levels of label perturbations in the training data. As the level of noise

increases, the accuracies of both methods decrease, similar to the previous experiment

and as would be expected. The difference in accuracies is relatively constant at

around 1–1.5% for all levels of noise. The TDR shows a similar decreasing trend,

with OCT outperforming CART by around 5%. The FDR of both methods again
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Figure 2-16: Synthetic experiments showing the effect of label noise.
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increases slightly with label noise, with OCT again having an FDR of about half that

of CART.

To further investigate the effect of noise on our results, we conducted each of

the experiments (apart from the final two) again with 5% feature and 5% label noise

added to the training data. In every case, we found that the results of the experiments

were nearly identical to the results without noise, apart from some slight decreases

in out-of-sample accuracy and TDR for both methods due to the noise. The relative

performance of the methods were almost exactly the same as on the noiseless data.

For this reason, we have not included these results in full detail, but confirm that the

trends we have shown indeed remain in the presence of noise.

Summary

We conclude by summarizing the collective findings of these tests with synthetic data.

In every case, the trees generated by OCT were a closer match to the ground truth

trees than those of CART. The out-of-sample accuracies of each method decreased

with problem difficulty (decreasing training set size and increasing dimension) as we

might expect, but OCT consistently gave accuracies 1–2% higher than CART. There

was a similar trend in the true discovery rate, which represented the proportion

of splits in the true tree that were correctly recovered, with OCT improving upon

CART by about 2–5% across all the experiments. The biggest difference between
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the methods was in the false discovery rate, which represented the proportion of

splits in the generated tree that were simply noise and unrelated. The CART trees

had false discovery rates of 35–40% in all experiments, whereas the OCT trees were

typically less than half this amount at 15–20%. Importantly, these high rates in the

CART did not improve even as the training set became very large, indicating that

CART is unable to filter out this noise from its trees, and CART trees inherently

have a large fraction of irrelevant splits. In contrast, the false discovery rate of OCT

decreases as the amount of data increases, so it is able to correctly learn the truth

in the data without introducing unnecessary splits into the tree. Finally, we note

that the significant advantage of OCT over CART persisted even in the presence of

large levels of noise in the training data. This provides strong evidence against the

widely-held belief that optimal methods are more inclined to overfit the training set

at the expense of out-of-sample accuracy.

2.6 Experiments with Real-World Datasets

In this section, we compare the performance of Optimal Classification Trees and

CART on several publicly available classification datasets widely-used within the

statistics and machine learning communities.

Experimental Setup

In order to provide a comprehensive benchmark of real-world performance, we used

a collection of 60 datasets obtained from the UCI Machine Learning Repository [77].

These datasets are used regularly for reporting and comparing the performance of

different classification methods. The datasets we use have sizes up to hundreds of

thousands of points, which we demonstrate can be handled by our methods.

Each dataset was split into three parts: the training set (50%), the validation set

(25%), and the testing set (25%). The training and validation sets were used to tune

the values of the hyperparameters of each method. We then used these tuned values

to train a tree on the combined training and validation sets, which we then evaluate
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against the testing set to determine the out-of-sample accuracy.

We used the same implementations for OCT and CART as in Section 2.5. We

trained Optimal Classification Trees of maximum depths from 1–10 on all datasets

with 𝑅 = 500 random restarts, using Algorithm 2.7 to tune the complexity parameter

𝛼 and the depth of the tree. The CART trees were obtained by fixing minbucket = 1

to match OCT, and tuning the complexity parameter using cost-complexity pruning

in the usual way for CART. The resulting tree was then trimmed to the specified

depth if required. This lets us evaluate the performance of all methods in the same

depth-constrained scenario, which is often important for applications that require

interpretability of the solutions, and also to examine how the performances change

with increasing depth.

We also conducted experiments where we allowed the depth of the trees to be

greater than 10, however this did not lead to deeper trees in nearly all cases because

the validation process controls the depth of the trees and prevents overfitting with

trees that are too deep. This means the results for trees of depth 10 are nearly

identical to the results that would be obtained with no depth restriction. As such,

we only report the results for trees with maximum depths from 1–10.

In order to minimize the effect of the particular splitting of the data into train-

ing, validation and testing sets, the entire process was conducted five times for each

dataset, with a different splitting each time. The final out-of-sample accuracies were

then obtained by averaging the results across these five runs.

Optimal Classification Trees vs. CART

We now present an in-depth direct comparison of OCT and CART. Both methods

seek to solve the same decision tree problem, so this comparison aims to show the ef-

fectiveness of solving the decision tree problem using modern optimization techniques

to obtain more optimal solutions.

The entire set of mean out-of-sample accuracies on each dataset for both meth-

ods at depth 10 is provided in Table 2.1, which reports the size and dimension of the

dataset, the number of class labels 𝐾, and the average out-of-sample accuracy of each
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Table 2.1: Full results for CART and OCT at depth 10. The best method for each
dataset is indicated in bold. Positive improvements are highlighted in blue, and
negative in red.

Dataset
Mean

out-of-sample
accuracy

Mean
improvement

Name 𝑛 𝑝 𝐾 CART OCT

acute-inflammations-1 120 6 2 95.3 100.0 +4.67± 2.91
acute-inflammations-2 120 6 2 100.0 100.0 0.00± 0.00
balance-scale 625 4 3 78.1 79.4 +1.27± 1.08
banknote-authentication 1372 4 2 98.0 98.9 +0.87± 0.36
blood-transfusion 748 4 2 77.2 78.1 +0.86± 0.80
breast-cancer-diagnostic 569 30 2 90.9 92.7 +1.82± 0.28
breast-cancer-prognostic 194 32 2 75.5 75.5 0.00± 0.00
breast-cancer 683 9 2 95.0 95.1 +0.12± 0.47
car-evaluation 1728 15 4 91.3 92.4 +1.16± 1.18
chess-king-rook-vs-king-pawn 3196 37 2 98.9 99.3 +0.43± 0.11
climate-model-crashes 540 18 2 91.3 92.3 +1.04± 0.90
congressional-voting-records 232 16 2 98.6 98.6 0.00± 0.55
connectionist-bench-sonar 208 60 2 69.2 75.0 +5.77± 2.51
contraceptive-method-choice 1473 11 3 53.2 53.2 −0.05± 1.75
credit-approval 653 37 2 87.2 86.7 −0.49± 0.83
cylinder-bands 277 484 2 66.1 67.5 +1.45± 2.59
dermatology 358 34 6 95.1 95.3 +0.22± 0.90
echocardiogram 61 6 2 72.0 73.3 +1.33± 1.33
fertility 100 12 2 87.2 86.4 −0.80± 1.96
haberman-survival 306 3 2 73.5 73.2 −0.26± 0.26
hayes-roth 132 4 3 75.8 78.2 +2.42± 4.64
heart-disease-cleveland 297 18 5 57.6 55.5 −2.13± 1.00
hepatitis 80 19 2 84.0 82.0 −2.00± 3.00
hill-valley-noise 606 100 2 55.8 56.6 +0.79± 1.38
hill-valley 606 100 2 49.8 52.6 +2.78± 0.68
image-segmentation 210 19 7 77.7 86.8 +9.06± 0.71
indian-liver-patient 579 10 2 71.6 71.2 −0.41± 0.60
ionosphere 351 34 2 88.3 91.3 +2.99± 3.12
iris 150 4 3 93.5 94.6 +1.08± 1.08
magic-gamma-telescope 19020 10 2 84.9 84.7 −0.24± 0.26
mammographic-mass 830 10 2 81.7 80.5 −1.26± 0.71
monks-problems-1 124 11 2 74.8 87.7 +12.90± 6.77
monks-problems-2 169 11 2 59.5 60.0 +0.47± 0.47
monks-problems-3 122 11 2 94.2 92.9 −1.29± 1.29
mushroom 5644 76 2 100.0 100.0 +0.04± 0.04
optical-recognition 3823 64 10 88.6 88.0 −0.61± 0.15
ozone-level-detection-eight 1847 72 2 93.1 93.0 −0.09± 0.09
ozone-level-detection-one 1848 72 2 96.5 96.6 +0.13± 0.13
parkinsons 195 21 2 87.8 86.9 −0.82± 4.21
pen-based-recognition 7494 16 10 96.1 95.5 −0.61± 0.19
pima-indians-diabetes 768 8 2 72.3 73.0 +0.73± 0.98
planning-relax 182 12 2 71.1 71.1 0.00± 0.00
qsar-biodegradation 1055 41 2 82.4 83.5 +1.14± 1.63
seeds 210 7 3 89.4 88.3 −1.13± 1.28
seismic-bumps 2584 20 2 92.9 93.2 +0.31± 0.48
skin-segmentation 245057 3 2 99.7 99.9 +0.17± 0.02
soybean-small 47 37 4 100.0 100.0 0.00± 0.00
spambase 4601 57 2 91.5 93.2 +1.70± 0.34
spect-heart 80 22 2 61.0 62.0 +1.00± 4.00
spectf-heart 80 44 2 72.0 76.0 +4.00± 6.20
statlog-german-credit 1000 48 2 72.0 71.0 −1.04± 1.15
statlog-landsat 4435 36 6 85.3 85.7 +0.45± 0.57
teaching-assistant 151 52 3 56.8 63.2 +6.49± 2.78
thoracic-surgery 470 24 2 84.8 84.8 0.00± 0.00
thyroid-disease-ann 3772 21 3 99.7 99.7 −0.02± 0.04
thyroid-disease-new 215 5 3 92.8 94.0 +1.13± 0.75
tic-tac-toe-endgame 958 18 2 94.1 94.0 −0.08± 0.89
wall-following-robot-2 5456 2 4 100.0 100.0 0.00± 0.00
wall-following-robot-24 5456 4 4 100.0 100.0 0.00± 0.00
wine 178 13 3 84.9 94.2 +9.33± 2.47
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Figure 2-17: Mean out-of-sample accuracy for each method across all 60 datasets.
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method along with the mean accuracy improvement for OCT over CART and the cor-

responding standard error. As we noted earlier, the results with no depth restriction

were nearly identical to the results for depth 10, so these results for depth 10 should

additionally be seen as the results for the case where the depth is unconstrained.

Figure 2-17 shows the mean out-of-sample accuracy for each method across all 60

datasets as a function of the depth of the tree. These accuracies are also shown in

Table 2.2, along with the mean difference between the methods and the associated

p-value indicating the statistical significance of the difference.

We see that OCT is stronger than CART at all depths, with an improvement over

CART of about 2% at lower depths, shrinking to about 1% at higher depths, and this

difference is statistically significant at all depths. We believe that the difference is

larger for the shallower trees because the impact of making a bad choice high in the

tree is higher for shallow trees than for deeper trees, where there is more scope for

the tree to recover from a bad initial split with the subsequent splits. Note that even

at depth 1, a significant difference is present between the methods, which is simply

the effect of using the misclassification score to select the best split as opposed to an

impurity measure. Finally, we see that CART at depth 10 (or no depth restriction)

performs about the same as OCT at depth 4, showing that OCT can learn trees of
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Table 2.2: Mean out-of-sample accuracy (%) results for CART and OCT across all
60 datasets.

Maximum
depth

Mean out-of-sample
accuracy (%) Mean

improvement p-value

CART OCT

1 70.35 70.66 +0.31± 0.16 0.0481
2 75.78 77.92 +2.13± 0.32 ∼ 10−10

3 79.27 81.17 +1.90± 0.38 ∼ 10−6

4 80.85 82.91 +2.05± 0.37 ∼ 10−7

5 81.75 83.59 +1.83± 0.38 ∼ 10−6

6 82.61 83.98 +1.38± 0.31 ∼ 10−5

7 82.76 84.35 +1.58± 0.30 ∼ 10−7

8 83.22 84.36 +1.14± 0.28 ∼ 10−4

9 83.33 84.45 +1.12± 0.27 ∼ 10−4

10 83.46 84.57 +1.11± 0.27 ∼ 10−4

the same accuracy as CART with much fewer splits. This indicates that OCT is able

to better discover the truth in the data and give trees with truly meaningful splits.

Figure 2-18 provides an example that emphasizes the additional power and in-

terpretability of OCT over CART. The trees shown in this figure were generated as

part of these computational experiments for the “Banknote Authentication” dataset

with one of the five random seeds tested. From our results for this seed, we identified

the CART tree with the best out-of-sample accuracy, which was 98.3%. This tree is

shown in Figure 2-18a, and is depth 7 with 15 splits. The best out-of-sample accuracy

for OCT with this seed was 99.1%, halving the error compared to the best CART

tree. This tree is shown in Figure 2-18b, and is depth 6 with 12 splits, so not only

provides a significant improvement in out-of-sample accuracy but also is slightly more

interpretable since it is smaller. To provide a direct comparison of interpretability,

we identified the depth where the OCT out-of-sample accuracy was closest to that of

CART. This tree is shown in Figure 2-18c, and has the same out-of-sample accuracy

as CART of 98.3% with depth 4 and 7 splits. OCT therefore achieves the same ac-

curacy as CART with a tree that is approximately half the size, demonstrating the

significant improvements in interpretability that are enabled by OCT.

Table 2.3 shows the number of times CART and OCT were the strongest method
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Figure 2-18: A comparison of CART and OCT trees on the “Banknote Authentica-
tion” dataset.
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Table 2.3: Number of datasets where CART and OCT were strongest across all 60
datasets.

Maximum depth CART OCT Ties

1 9 25 26
2 10 33 17
3 15 34 11
4 12 38 10
5 15 38 7
6 15 37 8
7 15 38 7
8 15 37 8
9 13 38 9
10 18 34 8

for a dataset across the sample of 60 datasets, broken down according to the maximum

depth of the trees. We see that OCT performs strongest on significantly more datasets

than CART. At depths 1 and 2, OCT wins about three times more often than CART,

although there are a larger number of ties at these depths. At most other depths, OCT

wins around 2.5 times more often than CART. The weakest performance for OCT

relative to CART is at depth 10 (or with no depth restriction), yet it still performs

strongest in about twice as many datasets as CART. These results show that OCT is

able to outperform CART in a significant majority of datasets, in addition to having

a higher mean out-of-sample accuracy across the sample of datasets.

We have established that OCT is more likely to outperform CART, and has a

small yet significant gain in out-of-sample accuracy across the collection of datasets.

Next, we consider the relative performance of the methods according to characteristics

of the dataset in order to identify the types of problems where each method is more

likely to outperform the other.

In the synthetic experiments of Section 2.5, we found that the improvement of

OCT over CART increased as the problem difficulty, i.e., as the number of points

decreased or as the number of features increased. We cannot easily investigate these

effects individually for the real-world datasets since they are so varied in both 𝑛

and 𝑝 across the sample of datasets. Instead, we can construct a single measure for
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Figure 2-19: Improvement in out-of-sample accuracy for OCT over CART for each of
the 60 datasets, according to ratio of 𝑛 and log(𝑝).
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problem difficulty, and measure the change in accuracy improvement as a function

of this measure. The metric we have derived is 𝑛/ log(𝑝), which decreases as either

𝑛 decreases or 𝑝 increases, so lower values of this measure indicate more difficult

problems, in line with the findings of the synthetic experiments. We found empirically

that including the log in the denominator achieves the best balance between the

scaling with 𝑛 and 𝑝.

Figure 2-19 presents the accuracy improvement of OCT against CART as a func-

tion of this difficulty metric. We also divide the datasets into two groups: those with

difficulty metric lower than 100, and those greater than 100. We can see that OCT

gives the largest improvements in accuracy over CART for datasets below this thresh-

old. The mean accuracy improvement for datasets below the threshold is 2.59%, while

for those above the threshold the mean improvement is 0.26%. This reinforces the

results from the synthetic experiments that the degree of improvement of OCT over

CART is correlated with the problem difficulty; for difficult problems with few data

or many features, the improvement of OCT tends to be larger.

We conclude this section by summarizing the key results from experiments on real-

world datasets. Across a wide range of datasets with varying characteristics, we have

comprehensive evidence that OCT delivers a significant improvement in out-of-sample
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accuracy over CART. In particular, when using trees of maximum depth 4, OCT can

achieve the same accuracy as CART with no depth restriction. This demonstrates that

OCT can achieve the same level of performance as CART with much less complexity

in the tree, making the trees superior for interpretation. Finally, we found further

evidence to reinforce the findings of the synthetic experiments in Section 2.5 that

the improvement of OCT over CART increases as the problem difficulty increases,

meaning much better at constructing trees for problems with fewer data or more

features in the data.

2.7 Conclusions

In this chapter, we have revisited the classical problem of decision tree creation under

a modern optimization lens. We framed the problem that the CART algorithm solves

as a traditional optimization problem, and presented a novel MIO formulation for

creating optimal decision trees that overcomes the inherent limitations of CART and

other methods that are based on top-down, greedy induction.

We found empirically that the MIO formulation was too large to solve in practical

times, and in a time-limited scenario delivered marginal improvements in solution

quality but was not able to say anything about the optimality of these solutions

after multiple hours. This motivated a new perspective on the problem to reduce the

dimensionality, and led to a local search heuristic based around re-optimizing existing

tree solutions one node at a time. This local search approach delivers solutions that

significantly outperform both CART and the MIO-based approach, and runs in times

within 1–2 orders of magnitude of CART.

We presented batch cost-complexity pruning, a new method for tuning the com-

plexity parameter that gives much higher precision in choosing the optimal hyperpa-

rameter value compared to the traditional cost-complexity pruning. This new proce-

dure combines the pruning results of multiple high-quality trees, which smoothens the

resulting pruning curve and allows more accuracy in identifying the true minimizing

value. We incorporated this method in a complete procedure for tuning the OCT
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hyperparameters that gives very strong out-of-sample performance without taking

too long to tune.

Experiments with synthetic data provide strong evidence that OCT can better re-

cover the true generating decision tree in the data, contrary to the popular belief that

optimal methods will just overfit the training data at the expense of generalization

ability. In particular, we find that around 35–40% of the splits in trees generated by

CART bear no resemblance to the tree that generated the data, whereas this num-

ber is only around 15–20% for OCT, indicating the latter are much more reliable for

interpretation.

We also conducted comprehensive computational experiments with a sample of 60

real-world datasets, and found that OCT significantly outperformed CART across this

sample, with an average improvement in out-of-sample accuracy of 1–2% depending

on the depth of the tree used. We also found that the improvement of OCT over

CART increased as the problem difficulty increases, namely as the number of points

decreases or the number of features increases. This indicates that OCT is more

capable of identifying the true structure in the data in scenarios where there is much

more noise than signal, a common occurrence in practical applications.

These results provide comprehensive evidence that the optimal decision tree prob-

lem is tractable for practical applications and leads to significant improvements over

the current state-of-the-art decision tree learners.
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Chapter 3

Optimal Classification Trees with

Hyperplane Splits

Classical state-of-the-art methods for constructing decision trees focus exclusively on

trees with splits that are parallel to the axes, regardless of whether they are single-

tree methods like CART and C4.5, or ensemble methods like Random Forests and

Gradient Boosting. In many cases, removing this restriction that the splits be parallel

to the axes could lead to significant improvements in the quality of the tree. However,

despite work in this area, to date no method has been developed to find trees with such

hyperplane splits that is both tractable on real problem sizes and leads to significant

improvements over the axes-parallel case.

The key problem when trying to generate trees with hyperplane splits in the same

way as axis-parallel splits is the large number of possible hyperplane splits. The

axis-parallel algorithms find the optimal split at a node by conducting an exhaustive

search of all 𝑛 · 𝑝 possible splits. When we remove the axis-parallel restriction, this

number of possible splits increases to 2𝑝 · ( 𝑛
𝑝 ), because every subset of size 𝑝 from

the 𝑛 points defines a 𝑝-dimensional hyperplane which can then be rotated slightly

to divide the subset of 𝑝 points in all 2𝑝 ways. This large increase in the number

of possible splits makes an exhaustive search prohibitively expensive; the problem of

finding the hyperplane split with the lowest misclassification error is NP-hard [59].

There have been many proposals that yield approximate solutions for the best
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hyperplane split. The first method for trees with hyperplane splits was CART with

linear combinations (CART-LC) [25], and works by perturbing the coefficients in the

hyperplane sequentially until a local optimum is attained. The main limitation to

this method is that the search procedure is deterministic and always converges to

the same optimum for a given set of points, which may be far from the global op-

timum. Another method using a perturbation-based approach is SADT (Simulated

Annealing for Decision Trees) [58] which uses simulated annealing to perturb an ex-

isting hyperplane towards optimality. These perturbation approaches were combined

to give OC1 [91], which first uses the deterministic procedure of CART-LC to find a

local optimum, followed by the randomness of SADT to escape this local optimum.

This is coupled with searching from multiple randomized starting points to increase

the chances of finding a high-quality local optimum. Most other approaches for trees

with hyperplane splits apply other methods recursively to generate the splits in the

tree, such as logistic regression [116], support vector machines [9], linear discriminant

analysis [82, 83], and Householder transformations [120].

Most of these approaches do not have easily accessible implementations that can

be used on practically-sized datasets and as such, the use of decision trees with

hyperplanes in the statistics/machine learning community has been limited. We also

note that these approaches share the same major flaw as univariate decision trees, in

that the splits are formed one-by-one using top-down induction, and so the choice of

split cannot be guided by the possible influence of future splits.

In this chapter, we consider generating optimal classification trees with hyper-

planes. Specifically, we extend our approaches from Chapter 2 to generate trees with

hyperplane splits, and show that these trees significantly improve upon state-of-the-

art methods.

3.1 OCT with Hyperplanes via MIO

In Section 2.2, we developed an MIO formulation for finding the optimal classifica-

tion tree. This formulation only considered decision trees that use a single variable
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in their splits at each node. In this section, we show that it is simple to extend

our MIO formulation for axis-parallel trees to yield a problem for determining the

optimal decision tree with hyperplanes. When viewed from an MIO perspective, the

axis-parallel and hyperplane problems are very similar, and modeling the hyperplane

problem only requires minor modifications to the formulation for the axis-parallel

problem. This shows the flexibility and power of modeling the problem using MIO.

In a decision tree with hyperplanes, we are no longer restricted to choosing a

single variable upon which to split, and instead can choose a hyperplane split at each

node. The variables a𝑡 will be used to model the split at each node as before, except

we relax (2.4) and instead choose a𝑡 ∈ [−1, 1]𝑝 at each branch node 𝑡. We must

modify (2.2) to account for the the possibility these elements are negative by dealing

with the absolute values instead:

𝑝∑︁
𝑗=1

|𝑎𝑗𝑡| ≤ 𝑑𝑡, ∀𝑡 ∈ 𝒯𝐵,

which can be linearized using auxiliary variables to track the value of |𝑎𝑗𝑡|:

𝑝∑︁
𝑗=1

𝑎̂𝑗𝑡 ≤ 𝑑𝑡, ∀𝑡 ∈ 𝒯𝐵,

𝑎̂𝑗𝑡 ≥ 𝑎𝑗𝑡, ∀𝑡 ∈ 𝒯𝐵, 𝑗 ∈ [𝑝],

𝑎̂𝑗𝑡 ≥ −𝑎𝑗𝑡, ∀𝑡 ∈ 𝒯𝐵.

As before, these constraints force the split to be all zeros if 𝑑𝑡 = 0 and no split is

applied, otherwise imposing no restriction on a𝑡.

We now have that a𝑇
𝑡 x𝑖 ∈ [−1, 1], so we replace (2.3) with:

−𝑑𝑡 ≤ 𝑏𝑡 ≤ 𝑑𝑡, ∀𝑡 ∈ 𝒯𝐵.

Now we consider the split constraints (2.9) and (2.14). Previously we had that the

range of (a𝑇
𝑡 x𝑖−𝑏𝑡) was [−1, 1], whereas it is now [−2, 2]. This means we need 𝑀 = 2
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to ensure that the constraint is trivially satisfied when 𝑧𝑖𝑡 = 0. The constraints

therefore become:

a𝑇
𝑚x𝑖 < 𝑏𝑚 + 2 (1− 𝑧𝑖𝑡) , ∀𝑖 ∈ [𝑛], 𝑡 ∈ 𝒯𝐿, 𝑚 ∈ ℒ(𝑡), (3.1)

a𝑇
𝑚x𝑖 ≥ 𝑏𝑚 − 2 (1− 𝑧𝑖𝑡) , ∀𝑖 ∈ [𝑛], 𝑡 ∈ 𝒯𝐿, 𝑚 ∈ ℛ(𝑡), (3.2)

Finally, as before we need to convert the strict inequality in (3.1) to a non-strict

version. We do this by introducing a sufficiently small constant 𝜇:

a𝑇
𝑚x𝑖 + 𝜇 ≤ 𝑏𝑚 + (2 + 𝜇) (1− 𝑧𝑖𝑡) , ∀𝑖 ∈ [𝑛], 𝑡 ∈ 𝒯𝐿, 𝑚 ∈ ℒ(𝑡),

Note that we need to include 𝜇 in the rightmost term to ensure the constraint is

always satisfied when 𝑧𝑖𝑡 = 0. Unlike in the axis-parallel case, we do not choose a

value for 𝜇 in an intelligent manner, and instead need to choose a small constant. This

is because a hyperplane that separates two points can be rotated to come arbitrarily

close to each point, and it is not always feasible to find the minimum separation

distance like for axis-parallel splits as this would require enumeration of all 2𝑝 · ( 𝑛
𝑝 )

hyperplane splits. We must take care when choosing the value of 𝜇. A value that is

too small can lead to numerical issues in the MIO solver, while one that is too large

reduces the size of the feasible region, potentially reducing the quality of the optimal

solution. We take 𝜇 = 0.005 as a compromise between these extremes.

In the axis-parallel problem, we controlled the complexity of the tree by penalizing

the number of splits. In the hyperplane regime, a single split may use multiple

variables, and it seems natural to treat splits with greater numbers of variables as

more complex than those with fewer. To achieve this, we can instead penalize the

total number of variables used in the splits of the tree, which we note in the axis-

parallel case is exactly the number of splits in the tree. To achieve this, we introduce

binary variables 𝑠𝑗𝑡 to track if the 𝑗th feature is used in the 𝑡th split:

−𝑠𝑗𝑡 ≤ 𝑎𝑗𝑡 ≤ 𝑠𝑗𝑡, ∀𝑡 ∈ 𝒯𝐵, 𝑗 ∈ [𝑝].
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We must also make sure that the values of 𝑠𝑗𝑡 and 𝑑𝑡 are compatible. The following

constraints ensure that 𝑑𝑡 = 1 if and only if any variable is used in the split:

𝑠𝑗𝑡 ≤ 𝑑𝑡, ∀𝑡 ∈ 𝒯𝐵, 𝑗 ∈ [𝑝],

𝑝∑︁
𝑗=1

𝑠𝑗𝑡 ≥ 𝑑𝑡, ∀𝑡 ∈ 𝒯𝐵.

Finally, we modify the definition of complexity 𝐶 to penalize the number of vari-

ables used across the splits in the tree rather than simply the number of splits:

𝐶 =
∑︁
𝑡∈𝒯𝐵

𝑝∑︁
𝑗=1

𝑠𝑗𝑡

Combining all of these changes yields the complete Optimal Classification Trees

with Hyperplanes (OCT-H) model:

min
1

𝐿̂

∑︁
𝑡∈𝒯𝐿

𝐿𝑡 + 𝛼 · 𝐶 (3.3)

s.t. 𝐿𝑡 ≥ 𝑁𝑡 −𝑁𝑘𝑡 − 𝑛(1− 𝑐𝑘𝑡), ∀𝑘 ∈ [𝐾], 𝑡 ∈ 𝒯𝐿,

𝐿𝑡 ≤ 𝑁𝑡 −𝑁𝑘𝑡 + 𝑛𝑐𝑘𝑡, ∀𝑘 ∈ [𝐾], 𝑡 ∈ 𝒯𝐿,

𝐿𝑡 ≥ 0, ∀𝑡 ∈ 𝒯𝐿,

𝑁𝑘𝑡 =
∑︁

𝑖: 𝑦𝑖=𝑘

𝑧𝑖𝑡, ∀𝑘 ∈ [𝐾], 𝑡 ∈ 𝒯𝐿,

𝑁𝑡 =
𝑛∑︁

𝑖=1

𝑧𝑖𝑡, ∀𝑡 ∈ 𝒯𝐿,

𝐾∑︁
𝑘=1

𝑐𝑘𝑡 = 𝑙𝑡, ∀𝑡 ∈ 𝒯𝐿,

𝐶 =
∑︁
𝑡∈𝒯𝐵

𝑝∑︁
𝑗=1

𝑠𝑗𝑡,

a𝑇
𝑚x𝑖 + 𝜇 ≤ 𝑏𝑚 + (2 + 𝜇) (1− 𝑧𝑖𝑡) , ∀𝑖 ∈ [𝑛], 𝑡 ∈ 𝒯𝐿, 𝑚 ∈ ℒ(𝑡),

a𝑇
𝑚x𝑖 ≥ 𝑏𝑚 − 2 (1− 𝑧𝑖𝑡) , ∀𝑖 ∈ [𝑛], 𝑡 ∈ 𝒯𝐿, 𝑚 ∈ ℛ(𝑡),∑︁

𝑡∈𝒯𝐿

𝑧𝑖𝑡 = 1, ∀𝑖 ∈ [𝑛],
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𝑧𝑖𝑡 ≤ 𝑙𝑡, ∀𝑡 ∈ 𝒯𝐿,
𝑛∑︁

𝑖=1

𝑧𝑖𝑡 ≥ 𝑁min𝑙𝑡, ∀𝑡 ∈ 𝒯𝐿,

𝑝∑︁
𝑗=1

𝑎̂𝑗𝑡 ≤ 𝑑𝑡, ∀𝑡 ∈ 𝒯𝐵,

𝑎̂𝑗𝑡 ≥ 𝑎𝑗𝑡, ∀𝑡 ∈ 𝒯𝐵, 𝑗 ∈ [𝑝],

𝑎̂𝑗𝑡 ≥ −𝑎𝑗𝑡, ∀𝑡 ∈ 𝒯𝐵, 𝑗 ∈ [𝑝],

− 𝑠𝑗𝑡 ≤ 𝑎𝑗𝑡 ≤ 𝑠𝑗𝑡, ∀𝑡 ∈ 𝒯𝐵, 𝑗 ∈ [𝑝],

𝑠𝑗𝑡 ≤ 𝑑𝑡, ∀𝑡 ∈ 𝒯𝐵, 𝑗 ∈ [𝑝],

𝑝∑︁
𝑗=1

𝑠𝑗𝑡 ≥ 𝑑𝑡, ∀𝑡 ∈ 𝒯𝐵,

− 𝑑𝑡 ≤ 𝑏𝑡 ≤ 𝑑𝑡, ∀𝑡 ∈ 𝒯𝐵,

𝑑𝑡 ≤ 𝑑𝑝(𝑡), ∀𝑡 ∈ 𝒯𝐵 ∖ {1},

𝑧𝑖𝑡, 𝑙𝑡, 𝑐𝑘𝑡 ∈ {0, 1}, ∀𝑖 ∈ [𝑛], 𝑘 ∈ [𝐾], 𝑡 ∈ 𝒯𝐿,

𝑑𝑡, 𝑠𝑗𝑡 ∈ {0, 1}, ∀𝑗 ∈ [𝑝], 𝑡 ∈ 𝒯𝐵.

Note that from this formulation we can easily obtain the OCT problem as a special

case by restoring the binary constraints on a𝑡. The close relationship between the

axis-parallel and hyperplane problems reinforces the notion that the MIO formulation

is a natural way of viewing the decision tree problem.

3.2 OCT with Hyperplanes via Local Search

In this section, we extend the local search heuristic presented in Section 2.3 to gen-

erate trees with hyperplane splits, thereby avoiding the scaling issues of MIO-based

approaches and allowing us to generate Optimal Classification Trees with Hyperplanes

in a tractable and effective manner.

The MIO formulation for the OCT-H problem exhibits the same scaling issues as

in the parallel split case. The number of variables in the formulation grows incredibly
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Figure 3-1: Training accuracy (%) and running time for each method on “Blood
Transfusion Service Center” dataset.
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fast with the depth of the tree and number of training points, quickly causing the

MIO problem to become intractable. Figure 3-1 shows the performance of this MIO

formulation for OCT-H on the “Blood Transfusion Service Center” dataset from the

UCI Machine Learning Repository [77], along with CART and OCT using local search.

This small dataset has 𝑛 = 748 points with 𝑝 = 4 features and 𝐾 = 2 classes. We

can see at low depths that the OCT-H trees with hyperplane splits are significantly

stronger than the other trees which use parallel splits, which we would expect as

we know hyperplane splits are more powerful. However, as the depth increases, the

accuracy does not improve as fast as for the parallel tree methods, and at depths 5

and 6 does not improve upon the CART warm start at all. This is clear indication

that the problem is too large and difficult for the solver to find improved solutions,

as we expect hyperplane trees to be at least as powerful as the corresponding parallel

trees at each depth. We also can see that the MIO-based method is again many

orders of magnitude slower than the others, which limits its potential for practical

application.

To resolve the performance issues of the MIO-based method, we will use a local-

search heuristic similar to the one presented in Section 2.3 but with modifications

to allow generation trees with hyperplane splits. To do this, we simply augment

the procedure OptimizeNodeParallel from Algorithm 2.2 to search for the best
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hyperplane split in addition to the existing steps.

We use a perturbation approach to find optimize the coefficients in the hyper-

plane split, similar to that employed by CART-LC [25] and OC1 [91]. Underpinning

this approach is the observation that it is possible to optimize the value of a single

coefficient at a time using a linear search in 𝑂(𝑛) time. To see this, consider the

hyperplane split defined by â and 𝑏̂. A point x𝑖 will follow the lower branch of this

split if

𝑉𝑖 ,
𝑝∑︁

𝑗=1

𝑎̂𝑗𝑥𝑖𝑗 − 𝑏̂ < 0, (3.4)

otherwise the upper branch will be taken.

Now consider changing the value of a single coefficient in the 𝑘th feature from 𝑎̂𝑘

to 𝑎𝑘. The point x𝑖 will now follow the lower branch of this split if

𝑉𝑖 + (𝑎𝑘 − 𝑎̂𝑘)𝑥𝑖𝑘 < 0. (3.5)

If 𝑥𝑖𝑘 > 0, the point 𝑖 follows the lower split if and only if

𝑎𝑘 <
𝑎̂𝑘𝑥𝑖𝑘 − 𝑉𝑖

𝑥𝑖𝑘

, (3.6)

and otherwise we have 𝑥𝑖𝑘 = 0 (since the data are normalized to [0, 1]) and so this

test reduces to 𝑉𝑖 < 0 for point 𝑖 to follow the lower split. Combining these, we have

that point 𝑖 follows the lower split if and only if 𝑎𝑘 < 𝑈𝑖𝑘, where

𝑈𝑖𝑘 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑎̂𝑘𝑥𝑖𝑘 − 𝑉𝑖

𝑥𝑖𝑘

, 𝑥𝑖𝑘 > 0,

−∞, 𝑥𝑖𝑘 = 0, 𝑉𝑖 ≥ 0,

+∞, 𝑥𝑖𝑘 = 0, 𝑉𝑖 < 0.

(3.7)

We calculate these thresholds 𝑈𝑖𝑘 for every training point at the node under con-

sideration, giving us the critical values at which points will change from one side of

the hyperplane to the other. We sort these threshold values and then efficiently opti-

mize the value of 𝑎𝑘 over R by scanning the critical values in order and moving points
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from the lower branch to the upper branch one-by-one, calculating the resulting error

at each step. We return the value of 𝑎𝑘 that gave the lowest error, making this co-

efficient locally optimal. This search is nearly identical to the searches performed by

both the standard CART algorithm and our procedure BestParallelSplit from

Algorithm 2.3, except with the use of the values 𝑈𝑖𝑘 in place of 𝑥𝑖𝑘.

We also consider changing the hyperplane split by removing features from split,

which reduces the complexity so may improve the overall loss. To do this, we calculate

the values of each point corresponding to the split after the 𝑘th coefficient has been

deleted:

𝑊𝑖𝑘 , 𝑉𝑖 + 𝑏̂− 𝑎̂𝑘𝑥𝑖𝑘, (3.8)

and therefore point 𝑖 follows the lower branch of the split with the 𝑘th coefficient

deleted if 𝑊𝑖𝑘 < 𝑏. We can then sort these critical values and scan them in the same

way as above to find the optimal value for 𝑏 that minimizes the loss function. This

gives us the optimal threshold for the hyperplane after the 𝑘th coefficient is deleted,

which we accept if this transformation improves the loss.

We repeat this search to optimize the coefficients by perturbation and deletion

in turn until no improvement is possible for any coefficient, giving us a hyperplane

split that is a local minimum for the error at the node. The full details of this search

procedure are given in Algorithm 3.1.

We find empirically that there are typically many such local minima at a node

in the tree, and so which minimum is reached depends on the starting solution.

We address this by considering perturbations from many starting hyperplane splits,

similar to how the local search algorithm considers many starting trees. The first

solution we consider is always the best parallel split at that node, ensuring that

our final solution is at least as good as this best parallel split. We then also use

𝐻 random hyperplane splits as starting solutions, where 𝐻 is a parameter of the

problem. Increasing the number of hyperplane restarts will generally improve the

quality of the local minimum found at the node, but will take longer to run. We have

found that setting 𝐻 to 5–10 gives the best tradeoff between accuracy and runtime.
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Algorithm 3.1 BestHyperplaneSplit
Input: Starting subtree T; training data X, y
Output: Subtree T with high-quality hyperplane split at root; error of subtree T
1: repeat
2: errorprev ← loss(T,X,y)
3: for 𝑘 = shuffle(1, . . . , 𝑝) do ◁ loop over all dimensions
4: values ← {𝑈𝑖𝑘 : 𝑖 = 1, . . . , 𝑛} ◁ critical values for perturbing
5: sort values in ascending order
6: for 𝑖 = 1, . . . , 𝑛− 1 do ◁ loop over all split placements
7: 𝑐 ← 1

2
(values𝑖 + values𝑖+1)

8: replace 𝑎𝑘 in split at root of T with 𝑐
9: if minleafsize(T) ≥ 𝑁min then ◁ check feasibility

10: error ← loss(T,X,y)
11: if error < errorbest then ◁ save split if better
12: errorbest ← error
13: Tbest ← T
14: if 𝑎𝑘 ̸= 0 at root of T then ◁ can only delete if present
15: values ← {𝑊𝑖𝑘 : 𝑖 = 1, . . . , 𝑛} ◁ critical values for deleting
16: sort values in ascending order
17: for 𝑖 = 1, . . . , 𝑛− 1 do ◁ loop over all split placements
18: 𝑏 ← 1

2
(values𝑖 + values𝑖+1)

19: replace 𝑎𝑘 in split at root of T with 0
20: change split threshold at root of T to 𝑏
21: if minleafsize(T) ≥ 𝑁min then ◁ check feasibility
22: error ← loss(T,X,y)
23: if error < errorbest then ◁ save split if better
24: errorbest ← error
25: Tbest ← T
26: until errorprev = errorbest ◁ no further improvement possible
27: return T, errorbest

This process is detailed in Algorithm 3.2, and the full local search procedure for

trees with hyperplane splits is then simply the same as shown in Algorithm 2.1 with

OptimizeNodeParallel replaced with OptimizeNodeHyperplane.

To examine the performance of this local search approach for hyperplane splits, we

return the example using the “Blood Transfusion Service Center” dataset. Figure 3-2

shows the performance of the OCT-H local search method with 𝐻 = 0, 1, and 5

random hyperplane restarts, alongside CART, OCT, and OCT-H with MIO. We see

that the OCT-H methods using local search improve significantly upon the accuracy
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Algorithm 3.2 OptimizeNodeHyper
Input: Subtree T to optimize; training data X, y
Output: Subtree T with best parallel or hyperplane split at root
1: if T is a branch then
2: Tlower,Tupper ← children(T)
3: else
4: Tlower,Tupper ← new leaf nodes
5: errorbest ← loss(T,X,y) ◁ error of current root
6:
7: Tpara, errorpara ← BestParallelSplit(Tlower,Tupper,X,y)
8: if errorpara < errorbest then
9: T, errorbest ← Tpara, errorpara ◁ replace with parallel split

10: errorlower ← loss(Tlower,X,y)
11: if errorlower < errorbest then
12: T, errorbest ← Tlower, errorlower ◁ replace with lower child
13: errorupper ← loss(Tupper,X,y)
14: if errorupper < errorbest then
15: T, errorbest ← Tupper, errorupper ◁ replace with upper child
16:
17: for ℎ = 1, . . . , 𝐻 + 1 do
18: if ℎ = 1 then
19: Tstart ← Tpara ◁ use best parallel split as first start
20: else
21: generate random split a, 𝑏
22: Tstart ← branch node aTx < 𝑏 with children Tlower,Tupper

23: Thyper, errorhyper ← BestHyperplaneSplit(Tstart,X,y)
24: if errorhyper < errorhyper then
25: T, errorbest ← Thyper, errorhyper ◁ replace with hyperplane split
26: return T

of the other three methods. The accuracy of OCT-H increases with the number

of random hyperplane restarts, as we would expect since the splits we are finding

are closer to optimality. Interestingly, OCT-H with no hyperplane restarts does not

perform any better than OCT at depth 1 and is outperformed by the MIO-based OCT-

H. However, once a single restart is added, the local search matches the accuracy of

the MIO-based method. This would indicate that simply perturbing the best parallel

split to find a hyperplane does not deliver solutions of the highest quality, and we

can improve upon this easily and cheaply by adding random hyperplane restarts. In

terms of runtime, the OCT-H methods take longer than OCT as we would expect,
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Figure 3-2: Training accuracy (%) and running time for each method on “Blood
Transfusion Service Center” dataset.
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and the runtime increases as the number of hyperplane restarts increases. These

increases are small relative to the runtime of the MIO-based OCT-H, and are still

reasonable for practical applications, since OCT-H with 5 hyperplane restarts and 100

tree restarts takes only 30 seconds, and delivers significant improvements in return for

this increased runtime. We also note as before that these runtimes are for a single-core

scenario; in a multi-core setting the runtimes could be just a few seconds.

Complexity analysis of hyperplane local search

We finish the presentation of the local search algorithm for the OCT-H problem by

deriving its time complexity. Recall in Section 2.3 we showed that the complexities

of CART and OCT were 𝑂(𝑛2𝑝) and 𝑂(𝑛3𝑝), respectively.

First, we consider the BestHyperplaneSplit function in Algorithm 3.1, which

is very similar to the BestParallelSplit in Algorithm 2.3. The biggest difference

is that the 𝑈𝑖𝑘 and 𝑊𝑖𝑘 values have to be calculated using the current tree, and thus

cannot be precomputed and presorted as in the parallel case. However, once we have

these values sorted, the two inner loops are the same as for BestParallelSplit,

and so have cost of 𝑂(𝑛𝑝𝐾). We can calculate 𝑈𝑖𝑘 and 𝑊𝑖𝑘 together for all 𝑖 and 𝑘 in

𝑂(𝑛𝑝) time, and then sorting these in each feature takes 𝑂(𝑛 log 𝑛) time, for a total

cost of 𝑂(𝑛𝑝)+𝑝·𝑂(𝑛 log 𝑛) = 𝑂(𝑛𝑝 log 𝑛). This means the BestHyperplaneSplit
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function has a total cost of 𝑂(𝑛𝑝(𝐾 + log 𝑛)).

Next, we consider OptimizeNodeHyperplane from Algorithm 3.2, which is

again nearly identical to its parallel counterpart OptimizeNodeParallel in Al-

gorithm 2.2, which has a cost of 𝑂(𝑛𝑝𝐾). The only difference is that we have

added the final loop that generates hyperplane splits. This loop first generates a

random hyperplane at cost 𝑂(𝑝), followed by running BestHyperplaneSplit at

cost 𝑂(𝑛𝑝(𝐾 + log 𝑛)), so each iteration of this loop runs in 𝑂(𝑛𝑝(𝐾 + log 𝑛)) time.

The loop runs for 𝐻 + 1 iterations, where 𝐻 is a constant and so does not affect the

complexity. This means the total cost of the OptimizeNodeHyperplane is simply

𝑂(𝑛𝑝(𝐾 + log 𝑛)).

Finally, we run the LocalSearch function from Algorithm 2.1 with OptimizeN-

odeHyperplane in place of OptimizeNodeParallel. Using a similar approach

as in the parallel case, we can compute point-to-leaf assignments and errors of all

subtrees outside the inner loop, at a cost of 𝑂(𝑛𝑝𝑇 +𝐾𝑇 ) = 𝑂(𝑛𝑝𝑇 ), where the new

factor of 𝑝 relative to the parallel case comes from each split in the tree using up to 𝑝

features for the hyperplane rather than one for parallel splits. The inner loop runs over

𝑇 nodes as in the parallel case, giving a runtime of 𝑂(𝑛𝑝𝑇 ) + 𝑇 ·𝑂(𝑛𝑝(𝐾 + log 𝑛)) =

𝑂(𝑛𝑝𝐾𝑇 + 𝑛𝑝𝑇 log 𝑛) per local search iteration. Using a similar argument to before,

we can bound the number of local search iterations by 𝑂(𝑛) if the complexity parame-

ter 𝛼 is zero, giving a final overall runtime for the local search of 𝑂(𝑛2𝑝𝑇 (𝐾+log 𝑛)).

In the absolute worst case where 𝑇 is 𝑂(𝑛), then the runtime of the local search for

OCT-H would be 𝑂(𝑛3𝑝(𝐾+log 𝑛)), which is very similar to the runtime of the OCT

local search of 𝑂(𝑛3𝑝𝐾), and so the addition of hyperplane splits has not significantly

increased the worst-case cost.

Under our set of realistic assumptions that the number of nodes in the tree and

the number of local search iterations are both 𝑂(log 𝑛), the OCT-H runtime would

be 𝑂(𝑛𝑝 log2 𝑛(𝐾 + log 𝑛)), compared to 𝑂(𝑛𝑝𝐾 log2 𝑛) for OCT and 𝑂(𝑛𝑝𝐾 log 𝑛)

for CART. As for the worst case, the only difference between OCT-H and OCT is

replacing a factor of 𝐾 with (𝐾 + log 𝑛).
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3.3 The Accuracy-Interpretability Tradeoff

In this section, we discuss the tradeoff between the interpretability and accuracy of

prediction models, first in the wider context of classification problems in general, and

then in a comparison between decision trees with parallel and hyperplane splits.

The current state of the art in classification

For the past 30 years, CART has remained among the state-of-the-art methods for

inducing decision trees. As a class of methods, decision tree learners are unparalleled

in their interpretability; to quote Breiman, “On interpretability, trees rate an A+” [30].

They do not however achieve state-of-the-art accuracies that are competitive with the

best methods for classification problems, although there are tree-based methods that

do achieve such accuracies.

One such method is random forests [29], which works by generating a forest of

CART trees, and then makes predictions by averaging the predictions of each tree in

the forest. To increase variance among the trees in the forest, each tree is generated

using a different bootstrap sample of the training points, and at each stage of the tree

growing process, the feature selected for the split can only be chosen from a random

sample of the features (typically of size √𝑝). The trees in the forest can be trained

independently, and so the whole training process is trivially parallelizable and can

achieve runtimes comparable to CART.

Another tree-based method that gives state-of-the-art accuracy is gradient-boosted

trees [49]. Like random forests, tree boosting also generates a collection of trees, ex-

cept the trees are generated iteratively. The prediction of the tree ensemble is given

by a weighted average of the predictions of the trees inside, and each new tree is

trained to fit the residuals of the current ensemble before being added to the en-

semble with a weight that minimizes the overall training error of the ensemble. In

this way, the boosting process iteratively refines the predictions of the ensemble by

fitting trees that focus on the points in the training set where the error is currently

largest. Tree-boosting delivers accuracies that are among the highest for classification

98



and regression problems, and there exist highly-optimized implementations such as

XGBoost [35].

Both of these methods achieve state-of-the-art accuracies and are ensemble meth-

ods, meaning they averaging a large collection of trees, rather than generating a single

decision tree like CART. The interpretability of these methods is therefore vastly di-

minished. This leads to the current dilemma that machine learning practioners face

in applications: one can either use a method like CART that is interpretable but does

not achieve a state-of-the-art accuracy, or one can use an ensemble method like ran-

dom forests or tree boosting that delivers state-of-the-art accuracy but throws away

interpretability.

Our aspiration is that Optimal Trees can allow us to do away with this tradeoff

entirely. Our goal is for the improved accuracy of Optimal Trees to reach state-of-

the-art levels, thus making them competitive with random forests and boosting in

terms of accuracy whilst maintaining the interpretability of a single decision tree.

Interpretability of Parallel and Hyperplane Trees

If we consider a single split in a decision tree, there is no question that a parallel

split is more easily interpreted than a hyperplane split, particularly as the number of

features used in the hyperplane split increases. As humans, we typically cannot easily

make sense of the linear combination of features in a hyperplane split, instead we are

better suited to interpreting just a single feature at a time. This means that when we

consider a single split in a decision tree, the increased power of using a hyperplane

split is balanced by the reduction in interpretability compared to a parallel split.

However, although hyperplane splits are less interpretable than parallel splits, it

is not necessarily the case that trees with hyperplane splits are less interpretable than

those with parallel splits. This is because the increased power of the hyperplane splits

can enable the tree to achieve equivalent accuracies to parallel trees with fewer splits,

and so the complexity of the tree is reduced. This means we need to consider the

tradeoff of the reduction in split interpretability against the gain in interpretability

through reduction of tree complexity.
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Figure 3-3: Comparison of optimal trees with parallel and hyperplane splits on the
“Banknote Authentication” dataset. The depth shown for each split type is the small-
est depth that gave a tree with training error below 0.5%.
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An example of such a scenario is shown in Figure 3-3, which shows two trees

that were trained on the “Banknote Authentication” dataset from the UCI Machine

Learning Repository [77], one with hyperplane splits and the other with parallel splits.

We trained each of these trees by increasing the maximum depth until the training

error fell below 0.5%. This gives us trees that have relatively few splits, yet still

achieve near-perfect training error. We see that the tree with hyperplane splits is

depth 2, and only has two splits, whereas the tree with parallel splits is depth 5 with

18 splits. Moreover, one of the splits in the hyperplane tree is actually a parallel

split, so there is no reduction in interpretability. This clearly showcases the tradeoff

between parallel and hyperplane trees; we can reduce the size and complexity of the

tree by nearly 90% by using a single hyperplane split at the root, but in doing so we

increase the complexity of this split reducing its interpretability.

The question of whether parallel or hyperplane trees are more appropriate for

a given problem is very context-dependent. We expect hyperplane trees to have

more power and hence higher accuracy, and this may come at the expense of some
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interpretability. However, as the example of Figure 3-3 shows, it is not always true

that a tree with hyperplane splits is less interpretable than one with parallel splits,

due to the reduction in tree size permitted by the increased power of hyperplane

splits. We also note that the OCT-H model rewards sparsity in the hyperplane splits

by penalizing the number of features used in each split. This means that the splits

in OCT-H trees may not reduce interpretability too greatly, as the majority of these

splits typically end up with only very few features.

3.4 Experiments with Synthetic Datasets

In this section, we investigate the performance of Optimal Classification Trees with

Hyperplanes on a suite of experiments using synthetically-generated data. The goal

of these experiments is to measure the performance of OCT-H relative to both OCT

and CART to see the impact of allowing hyperplane splits, and also relative to ran-

dom forests and boosting to evaluate OCT-H against methods with state-of-the-art

accuracy.

The experimental setup is the same as in Section 2.5. We randomly generate

decision trees and then use these trees to generate training and testing datasets.

Unless otherwise mentioned, we use the same default parameters as in Section 2.5

and use 𝐻 = 5 random hyperplane restarts in the OCT-H method.

In each experiment, we compare the performance of CART, OCT and OCT-

H, along with random forests (using the randomForest package in R [76]) and

gradient-boosted trees (using the XGBoost library [35] with 𝜂 = 0.1). The best

depths for random forests and boosting were determined through validation, and we

use the number of random restarts for the Optimal Tree methods as the number of

trees for random forests and boosting.

Ground truth trees with parallel splits

The first set of experiments we conduct are the same as in Section 2.5, except with the

addition of the three new methods. There are two main aims in repeating these tests
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Figure 3-4: Synthetic experiments showing the effect of training set size.
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with the new methods. The first is to examine the performance of OCT-H on data

that is generated from a parallel tree structure, and see whether it is able to train trees

that give performance similar to OCT. It seems possible that the additional flexibility

and power in the OCT-H model could lead it to overfit the training data with trees of

high complexity, so it is important to see whether this is the case. The other goal is

to benchmark random forests and boosting on these tree-structured datasets to give

additional context to the performance results of OCT and OCT-H.

The effect of the amount of training data

The first experiment again examines the effect of increasing training set size on the

performance of each method. The result are shown in Figure 3-4. We can see that

OCT and OCT-H have very similar performance in nearly all cases; the FDR of OCT-

H is slightly higher than OCT for lower training set sizes, indicating the increased

power is leading to trees with slightly more noise when not enough data is available.

However, this quickly vanishes as the number of points grows and OCT-H even has a

slightly lower FDR for the largest datasets, roughly three times smaller than CART.

For very small training set sizes, boosting has significantly higher out-of-sample accu-

racy than all other methods, but past 500 training points the highest accuracies are

shared by OCT, OCT-H and boosting. Random forests are weaker than these three

methods, but still offer an advantage over CART that diminishes with increasing
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Figure 3-5: Synthetic experiments showing the effect of number of features.
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training set size.

The effect of dimensionality

The second experiment shows the performance of the methods as we change the

number of features in the data. The results are presented in Figure 3-5. We can see

that OCT, OCT-H and boosting all have roughly the same out-of-sample accuracy

at all dimensions, while the accuracy of random forests quickly falls as the dimension

increases. The TDR of OCT-H is initially similar to OCT, and then falls to the same

level as CART at the higher numbers of features. Similarly, the FDR starts close

to OCT, then quickly rises past CART to 50% at the highest. This is unsurprising

because the true splits contain just a single feature, and so any hyperplane split with

more than one feature is deemed incorrect, and as the number of features increases

we would expect to see more splits involving multiple features because there are many

more such splits to consider.

The effect of the number of classes

The third experiment varies the number of classes in the ground truth tree, and the

results are shown in Figure 3-6. Again we see near-identical performance for OCT and

OCT-H in all measures. For binary problems, boosting has a high accuracy, but this

accuracy decreases rapidly as the number of classes is increased, while the accuracy
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Figure 3-6: Synthetic experiments showing the effect of number of classes.
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Figure 3-7: Synthetic experiments showing the effect of number of random restarts.
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of OCT and OCT-H remains relatively constant. This would seem to indicate that

boosting is not well-suited to problems with many classes in the same way as CART.

The accuracy of random forests also remains relatively constant as the number of

classes increases, but at a significantly lower level, closer to CART than to OCT and

OCT-H.

The effect of the number of random restarts

The fourth experiment examines the effect of the number of random restarts in the

local search on the performance of OCT and OCT-H. For comparison, we also set

the number of trees used in random forests and boosting to the same number, so

that each method is training the same number of trees. Figure 3-7 shows the results.
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Figure 3-8: Synthetic experiments showing the effect of feature noise.
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We see that OCT-H performs worse than OCT in all measures at lower numbers of

restarts, but largely catches up to OCT between 100–1000 restarts. This showcases

that the increased complexity and power of OCT-H means it is not as stable as OCT

until a moderate number of restarts are used. The accuracy of boosting at around

100 trees is a similar level to OCT and OCT-H, but as more trees are added it does

not continue to improve, unlike OCT and OCT-H. Random forests level out matching

the performance of CART at around 100 restarts. These results demonstrate that the

Optimal Tree methods are able to make use of additional trees in an effective manner,

whereas ensemble methods appear to reach a peak and largely do not improve from

there.

The effect of noise in the training data

The fifth experiment measures the effect of the amount of noise in the features of

the data. Like the corresponding experiment in Section 2.5, we added uniform noise

to 𝑓% of the training points. The results are shown in Figure 3-8. We can see

that all methods decline in accuracy as the amount of feature noise increases, but

boosting decreases faster than the other methods. With no noise, boosting performs

comparably to OCT and OCT-H, but at the highest levels of noise it is significantly

weaker than both, comparable to CART and random forests. The TDR of OCT and

OCT-H is very similar, while OCT-H has a slightly worse FDR than OCT, which
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Figure 3-9: Synthetic experiments showing the effect of label noise.
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we might expect since the feature noise could make it more difficult to identify the

correct split out of the many more possible hyperplane splits.

The final experiment considers the effect of adding label noise to the training data.

This is again achieved by flipping the labels of a random 𝑓% of the points. Figure 3-

9 shows the results. We can immediately see that boosting is very sensitive to the

presence of label noise. When there is no noise, it performs strongest along with OCT

and OCT-H, but at around 5% label noise it is tied for weakest with CART, before

falling significantly further as more noise is added. Admittedly, this highest level

of noise involves 25% of the points being labeled incorrectly, but OCT and OCT-H

are still able to achieve 95% accuracy out-of-sample in this case, demonstrating they

are able to cope with such high levels of noise. As we saw in the previous test with

feature noise, the FDR of OCT-H suffers as the amount of label noise increases, which

is again likely due to the increased difficulty in exactly identifying the correct splits

in such a noisy environment.

Summary for ground truth trees with parallel splits

We now summarize the results of these repeated experiments with parallel ground

truth trees from Section 2.5. In all cases, OCT and OCT-H had near-identical results,

indicating that the additional power of OCT-H is not leading it to overfit with more

complicated trees, and instead it is learning the structure in the data with ability
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similar to the parallel-only trees of OCT. The main exception was in the FDR of

OCT-H as the number of features became very large, where the lack of training data

relative to the number of possible hyperplane splits means it is very easy for OCT-H

to find splits that are not the same as in the true tree. We note that the accuracy of

the trees did not suffer in this regime, just the FDR. This indicates that we should be

cautious in interpreting hyperplane trees when the number of points is small relative

to the dimension of the points.

We found that boosting was typically the best of the other methods, with a large

advantage over random forests, which in turn offered a small improvement over CART.

However, despite its strength overall, boosting suffered in a few key settings, namely

as the number of classes to predict increases, and in the presence of either feature

or label noise. In all of these settings, OCT and OCT-H demonstrated significantly

better capacity to deal with the increasing problem difficult. Overall, OCT and OCT-

H were able to match or beat the performance of boosting in all tests, indicating that

we need not sacrifice interpretability to achieve the highest accuracy if we have reason

to believe the data has an underlying parallel tree structure.

Ground truth trees with hyperplane splits

The second set of experiments measures the performance of the various methods

on datasets that were generated from ground truth trees with hyperplane splits. To

control the generation of these hyperplane ground truth trees, we use a new parameter

called the maximum split density, which is the maximum number of features allowed

to be used in any split of tree. To generate a random hyperplane split in the tree,

we generate a random number between one and the maximum split density, and use

this as the number of feature to include in the split. We then randomly select which

of the features to use, and generate a random value for each to use in the split. This

gives a tree with hyperplanes that have a variety of split densities, which is important

because it allows us to examine whether OCT-H maintains sparsity and only uses as

many features as are required by each split, or whether it simply overfits with very

dense splits.
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Figure 3-10: Synthetic experiments showing the effect of split density.
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The effect of split density

The first experiment measures the effect of the maximum split density in the ground

truth tree on the performance of each method. The results are shown in Figure 3-

10. When the maximum split density is 1, the ground truth trees just have parallel

splits, so the performances are similar to the earlier experiments. We see that the

out-of-sample accuracy of all methods decreases as the maximum split density in-

creases, which we would expect because the problem is becoming significantly more

difficult. CART and OCT have the largest decrease in accuracy with the split den-

sity, indicating that, unsurprisingly, parallel trees are not well-suited to learning a

hyperplane tree structure. Despite this, OCT still offers an advantage over CART,

showing the power of the optimization approach. Random forests and boosting also

have a large decrease in accuracy as the maximum split density increases, but they

both offer significant improvements over CART and OCT. This would seem to in-

dicate that the aggregation approach used by these methods allows them to better

approximate the hyperplane structure in the data, despite their use of parallel splits

only. Finally, OCT-H has the highest accuracy by a significant margin, and only loses

a small amount of accuracy as the maximum density increases, showing that it has

enough power to learn well the truth in the data. OCT-H also significantly outper-

forms CART and OCT in both TDR and FDR, showing that it is able to learn the

true hyperplane splits in the data, although the performance of OCT in both these

108



Figure 3-11: Synthetic experiments showing the effect of number of random hyper-
plane restarts.
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measures falls as the maximum density increases due to the increased difficulty of the

problem with respect to the fixed amount of data available.

The effect of the number of random hyperplane restarts

The next experiment considers the effect of the number of random hyperplane restarts

𝐻 on the performance of OCT-H. Figure 3-11 shows the performance of the OCT-H

method as 𝐻 increases, with the maximum split density in the ground truth tree

being fixed at 5. We see that initially OCT-H has a similar accuracy to boosting

and random forests when 𝐻 = 0, and then there is a very significant increase in

accuracy when 𝐻 increases to 1. This indicates that simply perturbing the best

parallel split does not find the best hyperplane splits, and it is much more powerful

to perturb a randomized hyperplane split. As the number of hyperplane restarts is

further increased, the performance improves slightly, but not nearly as significantly as

the jump from 𝐻 = 0 to 𝐻 = 1. There is clear evidence that OCT-H should always

be used with 𝐻 ≥ 1, and the exact value used should depend on the amount of time

available. We use these results as guidance to recommend that OCT-H is used with

𝐻 = 5 to 𝐻 = 10 in practice, as this is sufficient to capture most of the benefit of

additional restarts without increasing the runtime too greatly. For specific problems,

it may be sufficient to use a smaller value of 𝐻 (e.g. 𝐻 = 2 is probably good enough
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in this synthetic example), but one should be wary of setting 𝐻 too small and losing

accuracy, hence our suggestion to start with 𝐻 between 5 and 10.

Summary for ground truth trees with hyperplane splits

Both experiments involving ground truth trees with hyperplane splits demonstrated

that OCT-H is able to perform well and learn the true tree structure even when the

splits in the tree are dense. The ensemble methods (random forests and boosting)

improved upon the single parallel-tree methods (OCT and CART), but were unable

to match the performance of OCT-H. This is strong evidence that the aggregation

approach of these methods is significantly less powerful for modeling non-parallel

splits when compared to just modeling these splits directly.

We also saw that there was a significant increase in performance for OCT-H when

changing from 𝐻 = 0 hyperplane restarts to 𝐻 = 1. The improvements for higher

𝐻 were much less dramatic, yet still significant, and so we recommend that a value

from 5–10 typically be used.

As seen with the parallel-split ground truth trees, we found that OCT-H beat the

performance of the ensemble methods in all cases with hyperplane-split ground truth

trees, demonstrating that we can achieve the highest accuracy with a model that

directly models the true structure of the underlying data, and moreover, in doing so

we generate a resulting model that is directly interpretable.

3.5 Experiments with Real-World Datasets

In this section, we benchmark the performance of Optimal Classification Trees with

Hyperplanes against both CART and standard Optimal Classification Trees on the

same sample of real-world datasets as Section 2.6. We also provide wider context for

these results by conducting comparisons with Random Forests and Gradient Boosting,

two tree-based classification methods that achieve state-of-the-art accuracy.
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Figure 3-12: Mean out-of-sample accuracy for each method across all 60 datasets.

70

75

80

85

2 4 6 8 10
Maximum depth of tree

O
ut

−
of

−
sa

m
pl

e 
ac

cu
ra

cy

CART OCT OCT−H Random Forest Boosting

Experimental Setup

We used the same experimental setup and sample of 60 datasets as in Section 2.6 for

these experiments. In addition to running CART and OCT as described in Section 2.6,

we ran OCT-H with 𝑅 = 100 random restarts and 𝐻 = 10 hyperplane restarts, using

Algorithm 2.4 to tune the values of the complexity parameter 𝛼 and the depth of

the tree. We also ran Random Forests and Gradient Boosting Trees using the same

implementations as described in Section 3.4.

Results and Discussion

Figure 3-12 shows the mean out-of-sample accuracies of all methods on the sample of

60 datasets according to the depth of the tree used.

First, we will compare OCT-H and the parallel split methods OCT and CART in

order to understand and quantify the additional power of hyperplane splits. We can

see that OCT-H delivers significantly better out-of-sample accuracy than CART and

OCT at all depths. OCT-H with trees of depth 2 outperforms CART at all depths,

and performs about the same as OCT at depth 5. OCT-H at depth 3 significantly

outperforms OCT at all depths. We also see that the accuracy of OCT-H stops

111



increasing after depth 4. These results reinforce the assertion in Section 3.3 that

trees with hyperplane splits can achieve comparable (or indeed better) accuracies to

those with parallel splits with much smaller trees, and therefore are not necessarily

strictly less interpretable.

Next, we include random forests and boosting in the comparison, in order to place

the accuracy results of OCT and OCT-H in a wider context by comparing them to

two methods that give state-of-the-art accuracies. We can see that OCT and random

forests perform roughly the same up to depth 4, after which random forests have a

small advantage. Boosting is the strongest method at depths 1 and 2, but OCT-H

catches up at depth 3 and then has a small edge over boosting at depths 4 and larger.

When the depth is 10 and is effectively unconstrained, we see that OCT-H is the

strongest method with a small advantage over boosting, which in turn has a small

advantage over random forests. There is then a larger gap down to OCT and then

CART.

Based on these aggregate results across all 60, it seems that OCT-H likely offers

a small advantage over random forests and has comparable performance to boosting

methods. We will now investigate these effects more extensively.

Table 3.1 shows both the accuracy and performance rank of each method on each of

the datasets. These ranks allows us to understand how the methods perform relative

to one another on each individual dataset rather than just in aggregate. The average

rank at the bottom gives the mean rank of each method across all datasets. These

ranks give evidence that CART is the weakest-performing method by a significant

margin, followed by OCT, which is not surprising as these methods are limited to

a single tree with parallel splits only. Boosting and random forests have the best

average rank, followed very closely by OCT-H.

Next, we conduct pairwise tests between the methods to determine which have

statistically significant differences in performance. Table 3.2 shows the results of these

comparisons. We follow the approach recommended by [40] and [50] for comparing

the results of multiple methods on multiple datasets. For each pair of methods, we

test significance using the Wilcoxon signed-rank test, and the resulting p-values are
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Table 3.1: Performance results for classification methods (with maximum depth 10)
on each of the 60 datasets. For each method, we show the out-of-sample accuracy (%)
followed by the method’s rank on the dataset in parentheses. A rank of 1 indicates
the method had the best performance on a dataset and a rank of 5 indicates the
method performed worst.

Dataset CART OCT OCT-H RF Boosting

acute-inflammations-1 95.33 (5) 100.00 (1.5) 98.00 (3.5) 100.00 (1.5) 98.00 (3.5)
acute-inflammations-2 100.00 (2.5) 100.00 (2.5) 100.00 (2.5) 100.00 (2.5) 98.67 (5)
balance-scale 78.09 (5) 79.36 (4) 89.94 (2) 85.22 (3) 91.21 (1)
banknote-authentication 98.02 (5) 98.89 (4) 99.71 (1) 98.95 (3) 99.48 (2)
blood-transfusion 77.22 (5) 78.07 (3) 78.61 (1) 77.65 (4) 78.50 (2)
breast-cancer-diagnostic 90.91 (5) 92.73 (4) 94.83 (2) 94.55 (3) 96.08 (1)
breast-cancer-prognostic 75.51 (1.5) 75.51 (1.5) 74.29 (3) 74.29 (4) 70.20 (5)
breast-cancer 94.97 (5) 95.09 (4) 97.19 (2) 97.78 (1) 96.37 (3)
car-evaluation 91.25 (4) 92.41 (3) 97.82 (1) 86.44 (5) 96.94 (2)
chess-king-rook-vs-king-pawn 98.90 (4) 99.32 (3) 99.40 (1) 97.00 (5) 99.40 (2)
climate-model-crashes 91.26 (5) 92.30 (3) 93.04 (2) 92.30 (4) 94.22 (1)
congressional-voting-records 98.62 (2.5) 98.62 (2.5) 97.24 (5) 98.62 (2.5) 98.62 (2.5)
connectionist-bench-sonar 69.23 (5) 75.00 (4) 77.31 (3) 84.62 (1) 84.62 (2)
contraceptive-method-choice 53.22 (4) 53.17 (5) 55.93 (1) 53.66 (3) 55.12 (2)
credit-approval 87.24 (1) 86.75 (3) 86.01 (5) 87.24 (2) 86.63 (4)
cylinder-bands 66.09 (5) 67.54 (4) 72.75 (2) 75.36 (1) 72.46 (3)
dermatology 95.06 (5) 95.28 (4) 96.18 (3) 98.20 (1) 96.40 (2)
echocardiogram 72.00 (5) 73.33 (4) 76.00 (1) 74.67 (2.5) 74.67 (2.5)
fertility 87.20 (1) 86.40 (2.5) 82.40 (5) 86.40 (2.5) 85.60 (4)
haberman-survival 73.51 (1) 73.25 (2) 72.73 (3) 70.65 (5) 71.17 (4)
hayes-roth 75.76 (5) 78.18 (3.5) 78.18 (3.5) 80.00 (1) 79.39 (2)
heart-disease-cleveland 57.60 (3) 55.47 (5) 56.00 (4) 58.93 (1) 58.13 (2)
hepatitis 84.00 (2) 82.00 (3) 78.00 (5) 87.00 (1) 80.00 (4)
hill-valley-noise 55.76 (4) 56.56 (2) 78.15 (1) 56.16 (3) 53.64 (5)
hill-valley 49.80 (5) 52.58 (3) 98.41 (1) 51.26 (4) 57.22 (2)
image-segmentation 77.74 (5) 86.79 (4) 87.92 (3) 94.72 (1) 90.19 (2)
indian-liver-patient 71.59 (1) 71.17 (2) 70.90 (3) 70.34 (4) 70.07 (5)
ionosphere 88.28 (4) 91.26 (3) 86.67 (5) 94.71 (1) 93.56 (2)
iris 93.51 (5) 94.59 (3) 94.59 (3) 95.14 (1) 94.59 (3)
magic-gamma-telescope 84.91 (4) 84.66 (5) 86.88 (2) 86.37 (3) 88.38 (1)
mammographic-mass 81.74 (2.5) 80.48 (5) 81.16 (4) 81.74 (2.5) 82.80 (1)
monks-problems-1 74.84 (5) 87.74 (3) 98.06 (1) 78.71 (4) 87.74 (2)
monks-problems-2 59.53 (3.5) 60.00 (2) 88.84 (1) 48.84 (5) 59.53 (3.5)
monks-problems-3 94.19 (1) 92.90 (3.5) 93.55 (2) 92.90 (3.5) 90.97 (5)
mushroom 99.96 (5) 100.00 (2.5) 100.00 (2.5) 100.00 (2.5) 100.00 (2.5)
optical-recognition 88.63 (4) 88.02 (5) 91.94 (3) 97.53 (1) 97.38 (2)
ozone-level-detection-eight 93.06 (4) 92.97 (5) 93.19 (3) 93.58 (2) 93.88 (1)
ozone-level-detection-one 96.49 (4) 96.62 (3) 96.23 (5) 96.67 (2) 96.75 (1)
parkinsons 87.76 (2) 86.94 (4.5) 87.76 (3) 88.57 (1) 86.94 (4.5)
pen-based-recognition 96.15 (4) 95.54 (5) 97.75 (3) 98.58 (2) 99.24 (1)
pima-indians-diabetes 72.29 (5) 73.02 (4) 73.13 (3) 74.17 (2) 75.42 (1)
planning-relax 71.11 (1.5) 71.11 (1.5) 70.22 (3) 70.22 (4) 68.44 (5)
qsar-biodegradation 82.36 (5) 83.50 (4) 85.63 (3) 88.29 (1) 88.06 (2)
seeds 89.43 (4) 88.30 (5) 91.70 (1) 90.94 (2) 90.57 (3)
seismic-bumps 92.91 (4) 93.22 (2.5) 92.79 (5) 93.28 (1) 93.22 (2.5)
skin-segmentation 99.72 (5) 99.89 (3) 99.93 (2) 99.83 (4) 99.95 (1)
soybean-small 100.00 (3) 100.00 (3) 100.00 (3) 100.00 (3) 100.00 (3)
spambase 91.47 (5) 93.17 (4) 94.21 (2) 93.97 (3) 95.93 (1)
spect-heart 61.00 (4.5) 62.00 (3) 61.00 (4.5) 71.00 (2) 73.00 (1)
spectf-heart 72.00 (4) 76.00 (3) 62.00 (5) 77.00 (2) 79.00 (1)
statlog-german-credit 72.00 (4) 70.96 (5) 72.08 (3) 73.92 (2) 75.12 (1)
statlog-landsat 85.28 (5) 85.73 (4) 87.30 (3) 89.83 (2) 91.22 (1)
teaching-assistant 56.76 (4) 63.24 (2) 63.78 (1) 53.51 (5) 60.00 (3)
thoracic-surgery 84.79 (2.5) 84.79 (2.5) 84.44 (4) 85.13 (1) 84.10 (5)
thyroid-disease-ann 99.75 (1) 99.72 (2) 99.66 (3.5) 99.55 (5) 99.66 (3.5)
thyroid-disease-new 92.83 (5) 93.96 (4) 95.47 (3) 97.36 (1) 96.23 (2)
tic-tac-toe-endgame 94.06 (4) 93.97 (5) 95.73 (3) 98.83 (2) 99.08 (1)
wall-following-robot-2 100.00 (2) 100.00 (2) 100.00 (2) 99.97 (4.5) 99.97 (4.5)
wall-following-robot-24 100.00 (2.5) 100.00 (2.5) 100.00 (2.5) 100.00 (2.5) 99.97 (5)
wine 84.89 (5) 94.22 (4) 95.11 (3) 98.22 (1) 97.33 (2)

Average rank 3.758 3.375 2.775 2.533 2.558
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Table 3.2: Pairwise significance tests for performance of classification methods (with
maximum depth 10) across 60 datasets. The comparisons are presented in order of
significance. For each comparison, the strongest-performing method is both bolded
and stated first in the comparison. The p-values are found using Wilcoxon signed-
rank test, and the adjusted p-values are calculated using the Holm-Bonferroni method
to account for multiple comparisons. All results above the dividing line are significant
at the 95% level.

Comparison p-value Adjusted p-value

Boosting vs. CART ∼ 10−5 0.0003
Random Forest vs. CART ∼ 10−4 0.0005

OCT-H vs. CART 0.0003 0.0021
Boosting vs. OCT 0.0005 0.0034
OCT-H vs. OCT 0.0023 0.0135
OCT vs. CART 0.0025 0.0135

Random Forest vs. OCT 0.0029 0.0135

OCT-H vs. Boosting 0.1507 0.4522
OCT-H vs. Random Forest 0.1932 0.4522
Boosting vs. Random Forest 0.6064 0.6064

then adjusted using the Holm-Bonferroni method [62] to control the familywise error

rate. The comparisons are presented in order of significance. We see that CART

is statisically significantly weaker than OCT, and both CART and OCT are weaker

than OCT-H, random forests, and boosting. The comparisons find no statistically

significant difference in performance between OCT-H, boosting, or random forests.

Together, these computational experiments with real datasets offer strong ev-

idence that OCT-H is competitive with the state-of-the-art classification methods

in practical settings, with comparable accuracies and no statistically significant dif-

ference in performance to random forests and boosting. The key difference is that

OCT-H achieves this performance with just a single decision tree, and so the resulting

classifier is significantly more interpretable than the other methods.

3.6 Conclusions

In this chapter, we extended our approach for constructing Optimal Classification

Trees to also consider making splits that were not restricted to be parallel to the axes.
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Prior attempts at creating decision trees with such splits were both not tractable

and did not lead to significant improvements over normal decision trees, and thus

have not seen practical use in applications. The increased difficulty in finding these

hyperplane splits is because there are an exponential number of possible hyperplane

splits to search over rather than a linear number in the axes-parallel case.

We made minor modifications to the MIO formulation for Optimal Classification

Trees to allow for these hyperplane splits, giving a formulation that can be solved to

find the globally optimal classification tree with hyperplane splits. As for the parallel

splits, we found that the MIO formulation did not scale well to practical problem sizes,

and so we adapted the local search procedure to also optimize hyperplane splits. The

trees constructed using this approach are significantly stronger than those found using

the MIO formulation with a large time limit, and are found in a fraction of the time.

We conducted extensive experiments with both synthetic and real-world datasets

in order to compare the performance of our optimal tree methods against the state-

of-the-art in classification. The experiments with synthetic data demonstrated that

our optimal trees are significantly stronger than random forests and boosted trees

in cases where the true underlying structure in the data is a tree. Moreover, the

experiments with 60 real-world datasets offer strong evidence that OCT-H also has

comparable performance to random forests and boosted trees in practical settings.

Together these results demonstrate that our optimal tree methods can deliver

state-of-the-art performance for classification problems without sacrificing the key

interpretability advantage of a single decision tree.
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Chapter 4

Optimal Regression Trees with

Constant Predictions

In the previous chapters, we have focused exclusively on training trees for classification

problems. Another central problem in statistics and machine learning is regression,

where the outcomes are no longer discrete categories, but instead are continuous-

valued.

Regression trees are harder to train compared to classification trees. In the leaf

of a classification tree, it is simple and computationally cheap to calculate the op-

timal prediction using the majority rule, and this is clearly the best prediction rule

to use. However, for a regression tree there are many options for predicting the out-

comes of the points in the leaf, which range in computational cost, simplicity, and

interpretabilty. As a result, it is not clear which prediction rule is best for regression

problems, and for this reason regression trees have historically received less attention

in the literature compared to classification trees.

The most common prediction rule for regression trees is to use a constant predic-

tion for all points in the leaf, which is found by calculating the mean outcome of the

points in the leaf. This approach is used by CART and other methods [25, 72, 63].

Training a tree with constant predictions in the leaves represents fitting a piece-wise

constant function to the training data. Constant predictions are chosen primarily

for computational reasons, since calculating the mean outcome can be done very effi-
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ciently. The predictions are not as accurate as other regression methods, and therefore

we might require deep trees to achieve a good level of accuracy on the dataset.

In this chapter, we apply the Optimal Trees methodology for classification prob-

lems from Chapters 2 and 3 to the regression problem, yielding a procedure for gener-

ating Optimal Regression Trees with constant predictions in each leaf. Our goal is to

investigate the effects of solving the regression tree problem optimally with constant

predictions in each leaf, as such trees are directly comparable to the regression trees

currently used in practice. We will consider trees with more sophisticated prediction

functions in each leaf in Chapter 5.

4.1 Review of Regression Tree Methods

In regression problems, we are supplied training data (X,y), containing 𝑛 observations

(x𝑖, 𝑦𝑖), 𝑖 ∈ [𝑛], each with 𝑝 features x𝑖 ∈ R𝑝 and an outcome 𝑦𝑖 ∈ R. As with the

classification problem, we will assume without loss of generality that the training

values have been normalized to the unit interval, so that each x𝑖 ∈ [0, 1]𝑝.

Regression trees take a near-identical structure to classification trees. The only

difference is that the prediction in each leaf is for the continuous outcome as opposed

to a discrete class label. In this chapter we deal only with regression trees that have

constant prediction functions in each leaf, so each point in a leaf will receive the same

predicted outcome, just like in classification.

Figure 4-1 shows an example of a regression tree trained on the “mtcars” dataset [60].

This dataset comes from Motor Trend magazine, and the goal is to predict fuel con-

sumption of automobiles based on variables describing the design and performance

of the automobile. We can see that the tree gives us an interpretable and intuitive

explanation of which factors lead to higher fuel consumption.

The tree growing procedure of CART is the same for classification as for regression,

except that we use a different loss function when selecting a split. In each leaf, it

calculates the squared loss that results from using the mean outcome in the leaf as

the final prediction, because the mean is the constant prediction that minimizes the
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Figure 4-1: CART regression tree predicting fuel consumption (in miles per gallon)
of automobiles using the “mtcars” dataset. “cyl” denotes the number of cylinders in
the engine, “wt” denotes the weight of the vehicle (in 1000 pounds), and “hp” denotes
the gross horsepower.

cyl < 5.00

31.57

wt < 1.89 hp < 192.50

24.13 12.4818.70

squared loss on the points in the leaf. It then selects the split that results in the lowest

overall squared loss, and then repeats recursively. Like classification, it stops when

either the minimum bucket size 𝑁min is reached, or when no further improvement in

error is possible.

Again mirroring classification, the final step in the process is pruning the tree

to limit the complexity. This is achieved in exactly the same way as classification

by using the complexity parameter to control the tradeoff between accuracy and

complexity. For regression, the squared loss is used for both the training and pruning

phases, rather than using a different loss function for each like in classification.

Based on this procedure, we can see that CART also aims to solve Problem (2.1)

when constructing regression trees, except in this case 𝑅(T) represents the mean-

squared error of the tree on the training data, rather than the misclassification error.

4.2 ORT with Constant Predictions via MIO

In this section, we follow the example of Optimal Classification Trees from Chapters 2

and 3 and formulate the task of constructing the globally optimal regression tree as

an MIO problem.

First, we note that the majority of the formulation for Optimal Classification

Trees can simply be reused for training regression trees. The only changes that need
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to be made are to the variables and constraints that determine the objective. For the

objective, we will consider the absolute and squared losses, the two most-commonly

used functions in regression.

At each leaf node 𝑡 in the tree, we will make the same constant prediction given

by the continuous variable 𝛽0𝑡 ∈ R. We then use the variables 𝑓𝑖 to denote the fitted

value that is predicted by the regression tree for each point 𝑖. This can be calculated

using the following expression:

𝑓𝑖 =
∑︁
𝑡∈𝒯𝐿

𝛽0𝑡𝑧𝑖𝑡, ∀𝑖 ∈ [𝑛]. (4.1)

Since only one of the 𝑧𝑖𝑡 = 1, indicating that the 𝑡th leaf contains point 𝑖, only

the term corresponding to the prediction function at leaf 𝑡 will remain, and the

corresponding prediction will be assigned for point 𝑖. This expression is non-linear in

the variables, however we can linearize it as follows:

−𝑀𝑓 (1− 𝑧𝑖𝑘) ≤ 𝑓𝑖 − 𝛽0𝑡 ≤𝑀𝑓 (1− 𝑧𝑖𝑘), ∀𝑖 ∈ [𝑛], 𝑡 ∈ 𝒯𝐿, (4.2)

where 𝑀𝑓 is a sufficiently large constant. We can see that if 𝑧𝑖𝑡 = 1, this forces

𝑓𝑖 = 𝛽0𝑡, and otherwise the constraint disappears. In order to specify a value for 𝑀𝑓 ,

we need to identify the largest possible value of 𝑓𝑖−𝛽0𝑡. We observe that at optimality,

the fitted values 𝑓𝑖 will lie in the range of y, and therefore so will the predictions 𝛽0𝑡.

This means that we can select 𝑀𝑓 = max𝑖 𝑦𝑖−min𝑖 𝑦𝑖 without affecting the feasibility

of any optimal solutions.

We now want to calculate the loss for each point 𝑖, denoted by the variable 𝐿𝑖,

based on the difference between the fitted value 𝑓𝑖 and actual value 𝑦𝑖.

First, we consider the absolute loss. We can set 𝐿𝑖 as the absolute loss for the 𝑖th

point as follows:

𝐿𝑖 = |𝑓𝑖 − 𝑦𝑖|, ∀𝑖 ∈ [𝑛], (4.3)
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which can be linearized to give

𝐿𝑖 ≥ +𝑓𝑖 − 𝑦𝑖, ∀𝑖 ∈ [𝑛], (4.4)

𝐿𝑖 ≥ −𝑓𝑖 + 𝑦𝑖, ∀𝑖 ∈ [𝑛], (4.5)

This linearization is valid under the knowledge that we will be minimizing the

values of 𝐿𝑖 as the objective, as in this case 𝐿𝑖 will either take the value of 𝑓𝑖 − 𝑦𝑖 or

−𝑓𝑖 + 𝑦𝑖.

We can also use the squared loss. In this case, we set 𝐿𝑖 as follows:

𝐿𝑖 ≥ (𝑓𝑖 − 𝑦𝑖)
2, ∀𝑖 ∈ [𝑛], (4.6)

which is a quadratic constraint. Similar to the absolute loss, this inequality is valid

under the knowledge that we are minimizing 𝐿𝑖 in the objective, as the constraint will

become tight at optimality. Quadratic constraints, while more complex than linear

constraints, are supported in recent versions of the state-of-the-art MIO solvers, and

so the problem with squared loss can be solved with the same solvers as the other

formulations.

We want to minimize the total loss across all our predictions plus a penalty on

tree complexity, which for trees with parallel splits gives:

min
1

𝐿̂

𝑛∑︁
𝑖=1

𝐿𝑖 + 𝛼 · 𝐶, (4.7)

where we have normalized the total loss by the baseline loss 𝐿̂ obtained by making a

single prediction for the entire training set. As for classification, this normalization

is done to make the effect of 𝛼 independent of the training set size.

The complete MIO formulation can be obtained by using these new constraints and

variables to replace the classification elements either in Problem (2.24) for parallel

splits or in Problem (3.3) for hyperplane splits. For instance, the following is the
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complete Optimal Regression Trees (ORT) model with squared loss:

min
1

𝐿̂

𝑛∑︁
𝑖=1

𝐿𝑖 + 𝛼 · 𝐶 (4.8)

s.t. 𝐿𝑖 ≥ (𝑓𝑖 − 𝑦𝑖)
2, ∀𝑖 ∈ [𝑛],

𝑓𝑖 − 𝛽0𝑡 ≥ −𝑀𝑓 (1− 𝑧𝑖𝑘), ∀𝑖 ∈ [𝑛], 𝑡 ∈ 𝒯𝐿,

𝑓𝑖 − 𝛽0𝑡 ≤ +𝑀𝑓 (1− 𝑧𝑖𝑘), ∀𝑖 ∈ [𝑛], 𝑡 ∈ 𝒯𝐿,

𝐶 =
∑︁
𝑡∈𝒯𝐵

𝑑𝑡,

aT
𝑚x𝑖 ≥ 𝑏𝑚 − (1− 𝑧𝑖𝑡), ∀𝑖 ∈ [𝑛], 𝑡 ∈ 𝒯𝐿, 𝑚 ∈ ℛ(𝑡),

aT
𝑚(x𝑖 + 𝜖) ≤ 𝑏𝑚 + (1 + 𝜖max)(1− 𝑧𝑖𝑡), ∀𝑖 ∈ [𝑛], 𝑡 ∈ 𝒯𝐿, 𝑚 ∈ ℒ(𝑡),∑︁

𝑡∈𝒯𝐿

𝑧𝑖𝑡 = 1, ∀𝑖 ∈ [𝑛],

𝑧𝑖𝑡 ≤ 𝑙𝑡, ∀𝑡 ∈ 𝒯𝐿,
𝑛∑︁

𝑖=1

𝑧𝑖𝑡 ≥ 𝑁min𝑙𝑡, ∀𝑡 ∈ 𝒯𝐿,

𝑝∑︁
𝑗=1

𝑎𝑗𝑡 = 𝑑𝑡, ∀𝑡 ∈ 𝒯𝐵,

0 ≤ 𝑏𝑡 ≤ 𝑑𝑡, ∀𝑡 ∈ 𝒯𝐵,

𝑑𝑡 ≤ 𝑑𝑝(𝑡), ∀𝑡 ∈ 𝒯𝐵 ∖ {1},

𝑧𝑖𝑡, 𝑙𝑡 ∈ {0, 1}, ∀𝑖 ∈ [𝑛], 𝑘 ∈ [𝐾], 𝑡 ∈ 𝒯𝐿,

𝑎𝑗𝑡, 𝑑𝑡 ∈ {0, 1}, ∀𝑗 ∈ [𝑝], 𝑡 ∈ 𝒯𝐵.

The size of these regression tree formulations is similar to their classification coun-

terparts. As mentioned earlier, the formulations using the absolute loss will remain

linear MIO problems, whereas the squared loss will lead to a quadratic MIO, which

are marginally harder to solve that their linear counterparts, but remain solvable

with commercial MIO solvers like Gurobi. Together, these facts mean that these

MIO formulations will have similar solution times to the corresponding classification

problems.
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4.3 ORT with Constant Predictions via Local Search

In this section, we modify the local search heuristic developed in Sections 2.3 and 3.2

to generate regression trees, allowing us to generate Optimal Regression Trees both

without (ORT) and with (ORT-H) hyperplane splits.

The MIO formulations for the ORT and ORT-H problems in Section 4.2 share the

same problems with scaling as the formulations for classification trees. Driven by the

number of training points and the depth of the tree, the size of the MIO formulation,

and in particular the number of binary variables, grows very fast and quickly leads

to the MIO formulation becoming intractable.

Figure 4-2 demonstrates the scaling issues of the MIO approach. We trained

CART and ORT trees on the “Hybrid Vehicle Prices” dataset made available in [78],

which is a small dataset with 𝑛 = 152 and 𝑝 = 3 (after excluding a single categorical

feature). We plot the training error and running time for both methods against the

depth of the tree being trained. The MIO problem was limited to 2 hours running

time. We can see that both methods find the same solution at depth 1, with MIO

providing a proof of optimality for this solution. At depth 2, MIO again solves the

problem to optimality, and improves upon the error of the CART solution. At depths

3–6 however, the MIO solution remains unchanged from the CART warm start after

the 2 hour timelimit has elapsed. Similar to classification, we believe it is likely that

the CART solutions can actually be improved, but that the MIO solver is simply

unable to make progress within the timelimit. This motivates a search for more

effective solution approaches.

Recall that for classification problems, we observed that once the points were

assigned to leaves in the tree, the resulting predictions and accuracies were closed-

form solvable by simply assigning the majority class in each leaf. This motivated our

local-search heuristic where we modify the tree one split at a time and evaluate the

objective function in closed-form after each modification.

Regression trees also share this characteristic of closed-form solvability once the

leaf assignment is fixed. For squared loss, we simply predict the mean of the labels in
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Figure 4-2: Training mean squared error and running time for each method on “Hybrid
Vehicle Prices” dataset.
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each leaf, and for absolute loss the median. This leads us to develop a similar local-

search heuristic for regression trees by simply applying the same search procedure and

substituting a different method for evaluating the loss in closed-form. The full local-

search procedure for Optimal Regression Trees is therefore obtained by following the

approach in Algorithm 2.1 and changing the definition of the loss function 𝐿(T,X,y)

in (2.26) to be the squared (or absolute) loss when the predictions in the leaves of T

are chosen to be the mean (or median) of the points contained in that leaf according

to the data X and y. We can then obtain the local-search for Optimal Regression

Trees with Hyperplanes by applying the modifications to Algorithm 2.1 described in

Section 3.2.

Complexity analysis of local search for regression

We will now analyze the computational complexity of the local search procedures for

constructing regression trees. Due to the similarity of these procedures to those for

classification, we will focus here on highlighting the differences.

First, we consider ORT and ORT-H with squared loss. In order to update the

error, we are required to first calculate the mean of the labels among each leaf in the

tree and then calculate the squared loss of this prediction on the points of each leaf.

When doing this inside BestParallelSplit and BestHyperplaneSplit, we can
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simply maintain the mean and variance of the labels of points in each leaf, since the

squared loss of the mean prediction on a subset of points is equivalent to the variance

of the labels of the subset. This means that the error update amounts to updating

the mean and variance after moving a single point between branches, which has a

cost of 𝑂(1), compared to 𝑂(𝐾) for classification. If instead we are calculating the

error from scratch, we must calculate the assignment of points to leaves for a cost of

𝑂(𝑛𝑇 ) and then the mean among labels in each leaf at a cost of 𝑂(𝑇 ) for an overall

cost of 𝑂(𝑛𝑇 ), compared to 𝑂(𝑛𝑇 +𝐾𝑇 ) for OCT.

For ORT, this means that the BestParallelSplit function has a cost of 𝑂(𝑛𝑝),

and therefore using the same approach as in Section 2.3 the cost of a local search

iteration is 𝑂(𝑛𝑇+𝑇 2)+𝑇 ·𝑂(𝑛𝑝) = 𝑂(𝑛𝑝𝑇 ), compared to 𝑂(𝑛𝑝𝐾𝑇 ) for classification.

If we make the same assumptions that the number of local search iterations is 𝑂(log 𝑛)

and the size of the tree is also 𝑂(log 𝑛), we arrive at a total cost of 𝑂(𝑛𝑝 log2 𝑛). The

cost of CART under similar assumptions is 𝑂(𝑛𝑝 log 𝑛), and so similar to classification,

the cost of ORT is just 𝑂(log 𝑛) more than CART.

For ORT-H, the cost of BestHyperplaneSplit becomes 𝑂(𝑛𝑝 log 𝑛), which

gives a cost per local search iteration of 𝑂(𝑛𝑝𝑇 ) + 𝑇 · 𝑂(𝑛𝑝 log 𝑛). Under the same

assumptions about the number of iterations and size of the tree, the overall cost for

ORT-H thus becomes 𝑂(𝑛𝑝 log3 𝑛), which is 𝑂(log 𝑛) more than ORT.

Next, we consider the cost of ORT and ORT-H with absolute loss. This requires

us to calculate the median of the labels at each leaf followed by the absolute loss.

There are approaches for updating the median and absolute loss that run in 𝑂(log 𝑛)

time [115]. This means that the cost of BestParallelSplit becomes 𝑂(𝑛𝑝 log 𝑛),

and the cost per local search iteration is 𝑂(𝑛𝑝𝑇 log 𝑛). Therefore the overall cost of

ORT with absolute loss under our assumptions is 𝑂(𝑛𝑝 log3 𝑛), an increase of 𝑂(log 𝑛)

compared to the cost of ORT with squared loss. Similarly, the cost of ORT-H with

absolute loss is 𝑂(𝑛𝑝 log4 𝑛), an increase of 𝑂(log 𝑛) over ORT-H with squared loss.

The key takeaway from this analysis is that ORT and ORT-H have the same

complexity overhead with respect to CART as OCT and OCT-H when the squared

loss is used. Both ORT and ORT-H incur an additional factor of 𝑂(log 𝑛) when using
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Figure 4-3: Training mean squared error and running time for each method on “Hybrid
Vehicle Prices” dataset.
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the absolute loss, which is a significant disadvantage compared to the squared loss.

Effectiveness of the local search procedure

We return to the example of the “Hybrid Vehicle Prices” dataset to demonstrate the

effectiveness of the local search procedure when applied to regression problems. Fig-

ure 4-3 compares the performance of CART and ORT using both the MIO and local

search approaches. We see that ORT with local search delivers significant improve-

ments over CART at depths 2–6 for a cost of increasing the running time about one

order of magnitude. Moreover, we see at depth 2 that the local search solution co-

incides with the MIO solution, which we know to be provably optimal. This gives

evidence that the solutions found by the local search procedure can indeed be optimal,

albeit without a certificate of optimality.

4.4 Experiments with Synthetic Datasets

In this section, we evaluate the performance of Optimal Regression Trees with con-

stant predictions, both with (ORT-H) and without (ORT) hyperplanes, on a collection

of synthetic experiments. These experiments aim to provide a comparison of Opti-

mal Regression Trees against both classical decision tree heuristics like CART and
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Figure 4-4: Synthetic experiments showing the effect of training set size.

0.6

0.7

0.8

0.9

1.0

102 103 104 105

Num. training points

O
ut

−
of

−
sa

m
pl

e 
R

2

0.00

0.25

0.50

0.75

1.00

102 103 104 105

Num. training points
T

ru
e 

di
sc

ov
er

y 
ra

te

0.00

0.25

0.50

0.75

1.00

102 103 104 105

Num. training points

Fa
ls

e 
di

sc
ov

er
y 

ra
te

CART ORT Truth

state-of-the-art methods like random forests and boosting.

The experimental setup mirrors that for classification in Sections 2.5 and 3.4 using

the same default parameters unless otherwise mentioned. We randomly generate

decision trees with labels drawn randomly from 𝑈(0, 1). We then generate training

and testing datasets in the same way as for classification, generating 𝑋 randomly and

using the ground truth decision tree to assign the corresponding label for each point.

We trained ORT and ORT-H with the squared loss due to the additional compu-

tational overhead of the local search using absolute loss.

Each method was tuned to maximize 𝑅2 using the same procedures as Sections 2.5

and 3.4. For each method, we report the out-of-sample 𝑅2, the true discovery rate

(TDR), and the false discovery rate (FDR).

CART vs. ORT

We first present a comparison between CART and OCT. Both methods solve the same

optimization problem to produce a single decision tree with constant predictions in

the leaves, and therefore this comparison seeks to demonstrate the impact of solving

the decision tree from a global perspective, rather than greedily.
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Figure 4-5: Synthetic experiments showing the effect of number of features.
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The effect of the amount of training data

The first experiment shows the impact of the amount of training data relative to the

complexity of the problem. The results are shown in Figure 4-4. We can see that

both methods approach a perfect out-of-sample 𝑅2 of 1 as the number of training

points increases. However, ORT reaches this point with significantly fewer training

points than CART, and has higher accuracy at all training sizes. The difference in 𝑅2

is largest for smaller training sets at around 0.1, and as the training set size increases

this improvement diminishes. This is clear evidence that ORT requires much less data

than CART to learn the structure in the data. This result mirrors the findings of the

corresponding experiment in Section 2.5, showing again that solving the decision tree

problem with better optimization methods does not lead to overfitting, but rather to

better solutions. The TDR is about the same for both methods, increasing as the

training set size increases, as we would expect. As the training set size increases,

CART’s FDR remains constant around 40%, while the FDR for ORT falls to around

10% with increasing training set size. This again reinforces the results for classifica-

tion, demonstrating that Optimal Trees are much better able to identify the whole

truth, and nothing but the truth, in the data.
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Figure 4-6: Synthetic experiments showing the effect of number of random restarts.
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The effect of dimensionality

The second experiment investigates the effect of the dimensionality of the problem,

and the results are shown in Figure 4-5. The performance of both methods decreases

with increasing dimension, reflecting the increased difficulty of the problem. The 𝑅2

falls faster with dimension for ORT than for CART, with the difference increasing to

0.08 when 𝑝 = 1000. ORT has a small but consistent improvement in the TDR over

CART. CART has an FDR around 40–45% at all dimensions, while ORT has a FDR

of around 10%, which in both cases is the same as the FDR for the 𝑛 = 1000 case in

the previous experiment. This shows that the ability of ORT to learn the truth in the

data and not be misled by irrelevant features is unaffected by high dimensionality.

The effect of the number of random restarts

The third experiment investigates how the number of random restarts affect the

performance of ORT. The results are shown in Figure 4-6. We see that the 𝑅2 of

ORT initially increases rapidly as the number of restarts is increased, but the rate

of increase begins to slow after around 100 restarts. The TDR increases steadily

as the number of restarts increases, overtaking CART at around 300 restarts. The

FDR initially decreases sharply, and eventually levels out at around 10%, less than a

quarter of CART’s 45%. Echoing the corresponding results from classification, this

experiment gives strong evidence we should be using at least 100–1000 restarts to
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Figure 4-7: Synthetic experiments showing the effect of feature noise.
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capture most of the the advantage of Optimal Trees. Further increasing the restarts

beyond this point continues to provide improvements in quality, but significantly

increases the computation required.

The effect of noise in the training data

The fourth experiment considers the effect of adding noise to the features of the

training data. As with the previous experiments for classification, we select a random

𝑓% of the training points and add random noise 𝜖 ∼ 𝑈(−0.1, 0.1) to every feature

of these points, where 𝑓 is the parameter of the experiment. Figure 4-7 shows the

impact of this feature noise in the training data. As expected, the 𝑅2 of both methods

decreases as we increase the noise in the data, with ORT having an advantage of

around 0.04–0.05 at all noise levels. The TDR decreases in a similar fashion to the

𝑅2 as the noise increases, with both methods performing similarly. The FDR increases

slightly with increasing noise for both methods, but ORT has an FDR less than half

that of CART.

The final experiment also adds noise to the training data, but to the labels instead

of the features. We introduce noise to the labels by adding i.i.d. random noise ∼

𝑁(0, 𝑓 2) to each point, where 𝑓 is the parameter of the experiment. Figure 2-16

shows the impact of increasing levels of such label noise in the training data. As

for the previous experiment with noise, the 𝑅2 of both methods decreases as the
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Figure 4-8: Synthetic experiments showing the effect of label noise.
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amount of noise is increased. ORT outperforms CART in terms of 𝑅2 by around

5–7%, with no apparent dependence on the amount of noise. The TDR also decreases

with increasing noise, with OCT outperforming CART by around 3–4%. The FDR

of CART is largely unaffected by the label noise, while the FDR of ORT increases

slightly as the amount of noise increases, growing from around 13% to around 23%,

compared to CART’s FDR of around 42%.

As we did in Section 2.5 for classification, we reconducted the first three exper-

iments with the addition of both feature noise and label noise to confirm that the

trends in the results presented are robust to noise. In each experiment, the results

with noise are not sufficiently different to those without, other than slight decreases in

performance due to the increased difficulty of the problems. This demonstrates that

the advantage of ORT over CART is unchanged by the presence of noise, provided

of course that the level of noise is not so high as to destroy any chance of recovering

the truth in the data.

Together these experiments with noise offer strong evidence that Optimal Trees do

not overfit to the noise in the data, but rather that by solving the problem optimally

we are better able to filter through the noise and extract only the truth.
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Figure 4-9: Synthetic experiments showing the effect of training set size.
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Next, we investigate the performance of ORT and ORT-H by comparing them to other

tree-based methods for regression (CART, random forests and boosting) in order to

evaluate the performance of Optimal Regression Trees against the methods used in

practice.

Ground truth trees with parallel splits

First, we repeat the experiments with all methods present so that we can examine the

performance of ORT-H on data generated from trees with a parallel split structure,

and also to compare the performance of CART, ORT and ORT-H to random forests

and boosting, which have state-of-the-art accuracy. This will give us a sense of the

significance of the improvements of ORT and ORT-H over CART.

The effect of the amount of training data

The first experiment measures the effect of increasing the amount of available training

data. The results are shown in Figure 4-9. We see that ORT and ORT-H share the

highest out-of-sample 𝑅2 at all training set sizes other than 𝑛 = 100, where ORT,

random forests, and boosting all perform similarly and ORT-H lags slightly. All

methods eventually approach perfect out-of-sample performance with enough training

data, but ORT and ORT-H require much less training data to reach this limit. All
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Figure 4-10: Synthetic experiments showing the effect of number of features.
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three tree methods have the same TDR, but CART has a significantly worse FDR

than the optimal tree methods. The FDR of CART remains roughly constant around

50% regardless of the training set size, indicating that half of the splits in the CART

model are meaningless, which causes problems when attempting to interpret the tree

in a meaningful way. On the other hand, the optimal tree methods have a FDR that

goes to zero as the training size increases, which coupled with the TDR approaching

one indicates that these methods can successfully recover the whole truth in the data,

and nothing but the truth.

The effect of dimensionality

The second experiment measures the performance of the methods while changing the

number of features in the dataset, and the results are shown in Figure 4-10. We

see trends that are generally similar to those for classification in Figure 3-5. The

out-of-sample 𝑅2 for all methods decreases as the number of features increases, as a

consequence of the problem becoming more difficult. However, the performance of

random forests falls much faster than the other methods, and this decreased perfor-

mance is also accompanied by increased variance. This seems to indicate that random

forests are ill-suited to regression problems with large numbers of features. ORT-H

shows a drop in accuracy compared to ORT as the number of features increases, but

this drop is much less significant than the corresponding drop seen for OCT-H vs
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Figure 4-11: Synthetic experiments showing the effect of number of random restarts.
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OCT. All three tree methods perform similarly in TDR. The FDR of CART and

ORT remains constant with an increasing number of features, but the FDR for ORT-

H begins to worsen. As with the out-of-sample 𝑅2, this deterioration as the number

of features increases is less pronounced than it was for OCT-H compared to OCT.

The effect of the number of random restarts

Next, we consider varying the number of random restarts used in the optimal tree

methods. For comparison purposes, we use the number of random restarts as the

number of trees in both random forests and boosting to measure how well each method

performs as a function of how many trees are trained overall. The results are shown

in Figure 4-11. The out-of-sample performance of ORT and ORT-H is the best,

and largely levels out after 1,000 random restarts. Boosting levels out after around

100 trees, but performs significantly worse than the optimal tree methods. Random

forests do not seem to be very stable, with performance that oscillates between that

of CART and boosting and has much higher variance than the other methods. The

TDR and FDR of ORT and ORT-H is very similar, with the TDR leveling out around

0.8, similar to CART, and the FDR decreasing towards zero, compared to around 0.45

for CART.
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Figure 4-12: Synthetic experiments showing the effect of feature noise.
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The effect of noise in the training data

The next experiment considers adding feature noise to the training data, and Fig-

ure 4-12 shows the results. We can see that the out-of-sample performance of all

methods falls as the noise increases, as we would expect. ORT is the best performing

method and CART the worst, with random forests and boosting performing similarly

inbetween ORT and CART. ORT-H starts with performance similar to ORT, but

with increasing noise falls to have performance similar to random forest and boost-

ing, indicating it has more trouble dealing with the noise than ORT. This is mirrored

in the TDR and FDR, where the TDR of ORT-H is slightly lower than the others at

high levels of noise, and the FDR is increasing towards that of CART as the noise

is increased. This diminished performance of ORT-H as the noise increases can be

attributed to it being a more flexible and powerful model, and thus it seems to be

thrown off by the noise more than the simpler ORT. That said, ORT-H is still the

second-best performing method in the test, and moreover the ground truth tree is a

parallel tree, so it is perhaps unsurprising that ORT has better performance when

the noise is increased and the problem becomes more difficult.

We also consider adding label noise to the training data, and the results of this

experiment are shown in Figure 4-13. The results for all methods largely mirror

those for classification in Figure 3-9, with the exception of random forests, which

seem to perform significantly worse under label noise for regression compared to
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Figure 4-13: Synthetic experiments showing the effect of label noise.
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classification. The optimal tree methods and CART all decrease slightly in out-of-

sample performance as the label noise increases, whereas both random forests and

boosting both deteriorate significantly as the label noise is increased. At the highest

level of noise, the 𝑅2 for ORT is around 0.85 compared to around 0.7 for random

forests and 0.55 for boosting, demonstrating that optimal tree methods can much

better handle label noise in the training data.

Summary for ground truth trees with parallel splits

We now summarize the results of these comparisons of all methods on data generated

from ground truth trees with parallel splits. In most cases, ORT and ORT-H per-

formed similarly and were the best among all the methods. There were some cases

where the performance of ORT-H was reduced compared to ORT, but even in these

cases it was still the second-best performing method. We also found some cases where

random forests and boosting exhibited significantly reduced performance, namely high

levels of label noise, and increased numbers of features for random forests.

The key takeaway from these results is that ORT and ORT-H achieve performance

at least comparable to, and often stronger than, random forests and boosting when

the underlying truth in the data follows a tree structure. We therefore do not need to

choose between model interpretability and performance if we have reason to believe

the data has an underlying tree structure.
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Figure 4-14: Synthetic experiments showing the effect of split density.
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Ground truth trees with hyperplane splits

Next, we consider experiments for which the data generation process is according

to a ground truth tree with hyperplane splits. These experiments aim to show the

added power of ORT-H over ORT, and also to benchmark the performance of CART,

random forests and boosting on these tougher problems to provide a reference for the

performance of the optimal tree methods.

The effect of split density

Our first experiment with data generated from trees with hyperplane splits considers

changing the maximum number of variables appearing in these hyperplane splits,

which we call the split density. The results are shown in Figure 4-14, and closely

mirror the corresponding results for classification in Figure 3-10. Unsurprisingly,

the performance of all methods falls as the split density increases and the problem

becomes harder. We see that ORT-H is the best performing method, which is again

unsurprising as it can explicitly model and learn hyperplane splits. Random forests

and boosting are the next best performing methods, followed by CART and ORT,

indicating that aggregating trees with parallel splits leads to better performance in

cases where the parallel splits do not accurately describe the structure in the data.
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Figure 4-15: Synthetic experiments showing the effect of number of random hyper-
plane restarts.
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The effect of the number of random hyperplane restarts

The second experiment with data generated by hyperplane trees aims to measure

the importance of the number of random hyperplane restarts 𝐻 on the performance

of ORT-H. The data was generated from ground truth trees with hyperplane splits

with a maximum split density of 5—the same as the number of features 𝑝. The

results shown in Figure 4-15 again closely match those for the corresponding test for

classification in Figure 3-11. We see that the most important change in performance

occurs when we go from no hyperplane restarts to just a single restart. After that,

the performance is largely level, with just small increases as 𝐻 is further increased.

This offers strong evidence that we should always choose 𝐻 > 0, and to be sure that

the best performance is reached, 𝐻 should likely be somewhere between 5 and 10

depending on how much computational power and time is available.

Summary for ground truth trees with hyperplane splits

We saw in both experiments where the ground truth was trees with hyperplane splits

that ORT-H was able to perform better than the other methods and deal with the

increased complexity of the problem. We saw that ORT-H had the best performance

as the density of the true hyperplane splits increased, and also that random forests and

boosting outperformed CART and ORT, but were unable to reach the performance
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of ORT-H. This shows that aggregation of trees with parallel splits can help to model

more complicated structures in the data, but is not as powerful as a model that

models the structure in the data exactly. We also saw that adding just a single

random hyperplane restart to the training process greatly increased the performance

of ORT-H, just as it did for OCT-H.

4.5 Experiments with Real-World Datasets

In this section, we evaluate the performance of our Optimal Regression Trees against

other methods across a wide sample of real-world datasets to compare their applica-

bility in practical settings.

Experimental Setup

The setup for these experiments largely mirrors that used for classification in Sec-

tions 2.6 and 3.5. We used a diverse collection of 26 regression datasets from the UCI

Machine Learning Repository [77], a data repository at the University of Porto [114],

and a data repository at the University of Florida [121]. The datasets have sizes in

from the hundreds to tens of thousands and a number of features typically in the

tens.

As described in Section 2.6, we split each dataset three ways into training, valida-

tion and testing (50/25/25%). We tuned the hyperparameters of each method using

the training and validation sets before training the final model on the combined train-

ing and validation sets with the tuned hyperparameter values. We then evaluated the

𝑅2 of the resulting model on the test set to determine the out-of-sample performance.

This procedure is repeated for five splittings of each dataset and the performances we

report are averaged across these different instances.

We trained all methods with maximum depths 1–10, which in nearly every case

was sufficiently deep and increasing the depth further did not improve the perfor-

mance. The results for depth 10 can therefore be seen as the results when imposing

no restriction on the maximum depth of each method.
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Table 4.1: Full results for CART and ORT at depth 10. The best method for each
dataset is indicated in bold. Positive improvements are highlighted in blue, and
negative in red.

Dataset Mean
out-of-sample 𝑅2 Mean

improvement
Name 𝑛 𝑝 CART ORT

abalone 4176 7 0.460 0.457 −0.003± 0.013
ailerons 7153 40 0.746 0.736 −0.010± 0.010
airfoil-self-noise 1502 5 0.816 0.814 −0.002± 0.009
auto-mpg 391 8 0.771 0.771 0.000± 0.011
automobile 158 51 0.581 0.590 +0.009± 0.089
cart-artificial 40767 10 0.948 0.948 0.000± 0.000
communities-and-crime 122 122 0.409 0.507 +0.098± 0.084
computer-hardware 208 36 0.789 0.858 +0.069± 0.093
concrete-compressive 102 7 0.453 0.364 −0.088± 0.072
concrete-flow 102 7 0.208 0.251 +0.043± 0.028
concrete-slump 102 7 0.172 0.217 +0.045± 0.023
cpu-act 8191 21 0.970 0.966 −0.004± 0.002
cpu-small 8191 12 0.959 0.959 0.000± 0.001
elevators 8751 18 0.686 0.689 +0.003± 0.003
friedman-artificial 40767 10 0.846 0.852 +0.006± 0.001
housing 505 13 0.705 0.750 +0.045± 0.058
hybrid-price 152 3 0.512 0.464 −0.048± 0.057
kin8nm 8191 8 0.442 0.498 +0.056± 0.014
lpga-2008 156 6 0.594 0.624 +0.030± 0.052
lpga-2009 145 11 0.802 0.786 −0.016± 0.023
parkinsons-motor 5874 16 0.159 0.159 0.000± 0.021
parkinsons-total 5874 16 0.144 0.163 +0.019± 0.006
vote-for-clinton 2703 9 0.315 0.286 −0.028± 0.013
wine-quality-red 1598 11 0.286 0.263 −0.024± 0.014
wine-quality-white 4897 11 0.279 0.282 +0.003± 0.003
yacht-hydrodynamics 307 6 0.988 0.991 +0.003± 0.002

CART was trained with minbucket = 1 and cp determined using cost-complexity

pruning. ORT was trained with minbucket = 1, 𝑅 = 100 random restarts, and cp

tuned using the batch pruning procedure in Algorithm 2.6. ORT-H was trained with

the same parameters as ORT along with 𝐻 = 5 random hyperplane restarts. Random

forests and boosted trees were trained as described in Section 3.4.

CART vs. ORT

First, we present a comparison of the relative performances of CART and ORT.

These comparisons allow us to directly measure the impact of solving the regression

tree construction problem with optimization methods rather than greedily.

Table 4.1 shows the out-of-sample 𝑅2 on each dataset for both methods with

maximum depth 10, as well as the average improvement in 𝑅2 of ORT over CART.
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Figure 4-16: Mean out-of-sample 𝑅2 for each method across all 26 datasets.
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The mean out-of-sample 𝑅2 across all datasets is shown in Figure 4-16 for both

CART and ORT as a function of the maximum depth of the tree. A comparison of

the accuracies is also provided in Table 4.2, showing the average performance of each

method, the average improvement of ORT over CART, and the associated p-value for

the statistical significance of the difference.

There is no difference in performance at depth 1 as CART is also optimal when

only one split is present; unlike classification, the CART and ORT loss functions are

the same for regression. The methods perform similarly at depths 2 and 3, indicating

that for very shallow trees the greediness of CART does not hurt its performance.

We see that ORT has a small advantage over CART of around 0.01 from depths 4–

10, although this difference is not statistically significant. This indicates that ORT

is able to slightly improve upon the performance of CART for deeper trees, but it

appears the key factor limiting performance is the structure of the model we are

fitting (a tree with parallel splits and constant predictions) rather than how well it

is being optimized. Similar to classification, the ORT is able to achieve performance

comparable to CART with shallower trees. For instance, the performance of CART

with depth 10 (effectively no restriction) is matched by ORT with depth 6 or 7,

meaning the trees are going to be more easily interpreted.
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Table 4.2: Mean out-of-sample 𝑅2 results for CART and ORT across all 26 datasets.

Maximum
depth

Mean out-of-sample
𝑅2 Mean

improvement p-value

CART ORT

1 0.312 0.312 0.000 -
2 0.465 0.467 +0.002± 0.006 0.7152
3 0.522 0.521 −0.001± 0.007 0.8298
4 0.542 0.556 +0.014± 0.008 0.0820
5 0.558 0.570 +0.012± 0.008 0.1507
6 0.565 0.577 +0.011± 0.008 0.1681
7 0.570 0.580 +0.010± 0.008 0.2034
8 0.573 0.584 +0.011± 0.008 0.1607
9 0.577 0.586 +0.009± 0.008 0.2330
10 0.579 0.586 +0.008± 0.008 0.3086

All methods

Next, we present a performance comparison of all methods considered. In addition to

CART and ORT, we include results for ORT-H to investigate the impact of allowing

hyperplane splits, as well as random forests and gradient boosted trees to compare

our methods against those with state-of-the-art regression performance.

Figure 4-17 shows the mean out-of-sample 𝑅2 for each method across all 26

datasets, as a function of the maximum permitted depth of the tree.

First, we compare ORT-H to the other single decision tree methods. We can see

that ORT-H improves significantly upon both CART and ORT at all depths larger

than 1, with an improvement in 𝑅2 from 0.05–0.10, depending on the depth. More-

over, ORT-H with depth 2 performs comparably to CART and ORT with no depth

restriction. This again demonstrates evidence for the idea introduced in Section 3.3

that a tree with hyperplane splits is not necessarily less interpretable than one with

parallel splits, because the depths of the trees might be very different to achieve the

same performance. Finally, we can see that the performance of ORT-H largely levels

out after depth 5, indicating that we are reaching some limit on how much larger

trees can help.

Next, we will compare against the two remaining methods which typically have
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Figure 4-17: Mean out-of-sample 𝑅2 for each method across all 26 datasets.
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state-of-the-art performance, random forests and boosting. We can see that the

strongest performer at all depths is boosting, improving upon the average 𝑅2 of ORT-

H by around 0.05. Random forests and ORT-H are comparable at depths up to 5,

after which random forests continues improving and eventually reaches performance

comparable to boosting at depth 10, while ORT-H levels out. We conclude that while

ORT-H is able to improve significantly upon the regression trees with parallel splits,

the addition of hyperplane splits is not enough to close the gap with random forests

and boosting, unlike in classification.

We will now quantify these comparisons using the same procedure for multiple

comparisons that was used in Section 3.5. Table 4.3 shows both the 𝑅2 and perfor-

mance rank of each method on each of the datasets, followed by the average rank of

each method at the bottom of the table. We can see that boosting is the strongest

method in terms of average rank, followed closely by random forests. There is then a

larger gap to ORT-H, which is then followed by ORT and CART which have roughly

the same average rank.

Table 4.4 shows the significance of the differences between each pair of methods,

again following the procedure in Section 3.5. We can see that both boosting/random

forests and ORT/CART do not have statistically significant differences in perfor-
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Table 4.3: Performance results for regression methods (with maximum depth 10) on
each of the 26 datasets. For each method, we show the out-of-sample 𝑅2 followed by
the method’s rank on the dataset in parentheses. A rank of 1 indicates the method
had the best performance on a dataset and a rank of 5 indicates the method performed
worst.

Dataset CART ORT ORT-H RF Boosting

abalone 0.460 (4) 0.457 (5) 0.519 (2) 0.477 (3) 0.536 (1)
ailerons 0.746 (4) 0.736 (5) 0.806 (3) 0.832 (2) 0.844 (1)
airfoil-self-noise 0.816 (4) 0.814 (5) 0.863 (3) 0.910 (2) 0.941 (1)
auto-mpg 0.771 (3) 0.771 (4) 0.766 (5) 0.847 (2) 0.849 (1)
automobile 0.581 (4) 0.590 (3) 0.551 (5) 0.732 (2) 0.736 (1)
cart-artificial 0.948 (1.5) 0.948 (1.5) 0.948 (4) 0.945 (5) 0.948 (3)
communities-and-crime 0.409 (4) 0.507 (3) 0.390 (5) 0.702 (1) 0.679 (2)
computer-hardware 0.789 (5) 0.858 (3) 0.797 (4) 0.929 (1) 0.929 (2)
concrete-compressive 0.453 (4) 0.364 (5) 0.569 (3) 0.690 (2) 0.792 (1)
concrete-flow 0.208 (5) 0.251 (4) 0.380 (3) 0.437 (1) 0.396 (2)
concrete-slump 0.172 (5) 0.217 (4) 0.570 (1) 0.359 (2) 0.272 (3)
cpu-act 0.970 (4) 0.966 (5) 0.975 (3) 0.981 (2) 0.985 (1)
cpu-small 0.959 (4) 0.959 (5) 0.967 (3) 0.974 (2) 0.979 (1)
elevators 0.686 (5) 0.689 (4) 0.874 (2) 0.815 (3) 0.877 (1)
friedman-artificial 0.846 (5) 0.852 (4) 0.920 (2) 0.896 (3) 0.952 (1)
housing 0.705 (5) 0.750 (4) 0.753 (3) 0.852 (2) 0.867 (1)
hybrid-price 0.512 (3) 0.464 (5) 0.509 (4) 0.615 (1) 0.577 (2)
kin8nm 0.442 (5) 0.498 (4) 0.752 (2) 0.659 (3) 0.776 (1)
lpga-2008 0.594 (5) 0.624 (4) 0.647 (3) 0.770 (2) 0.775 (1)
lpga-2009 0.802 (4) 0.786 (5) 0.848 (3) 0.890 (1) 0.885 (2)
parkinsons-motor 0.159 (4) 0.159 (5) 0.241 (3) 0.333 (2) 0.351 (1)
parkinsons-total 0.144 (5) 0.163 (4) 0.283 (3) 0.334 (2) 0.361 (1)
vote-for-clinton 0.315 (4) 0.286 (5) 0.354 (3) 0.408 (1) 0.404 (2)
wine-quality-red 0.286 (4) 0.263 (5) 0.299 (3) 0.429 (1) 0.394 (2)
wine-quality-white 0.279 (5) 0.282 (4) 0.300 (3) 0.442 (2) 0.497 (1)
yacht-hydrodynamics 0.988 (5) 0.991 (3) 0.991 (4) 0.994 (2) 0.996 (1)

Average rank 4.250 4.173 3.154 2.000 1.423
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Table 4.4: Pairwise significance tests for performance of regression methods (with
maximum depth 10) across 26 datasets. The comparisons are presented in order of
significance. For each comparison, the strongest-performing method is both bolded
and stated first in the comparison. The p-values are found using Wilcoxon signed-
rank test, and the adjusted p-values are calculated using the Holm-Bonferroni method
to account for multiple comparisons. All results above the dividing line are significant
at the 95% level.

Comparison p-value Adjusted p-value

Random Forest vs. CART ∼ 10−7 ∼ 10−6

Random Forest vs. ORT ∼ 10−7 ∼ 10−6

Boosting vs. CART ∼ 10−7 ∼ 10−6

Boosting vs. ORT ∼ 10−7 ∼ 10−6

Boosting vs. ORT-H ∼ 10−4 0.0002
ORT-H vs. CART ∼ 10−4 0.0003
ORT-H vs. ORT 0.0008 0.0033

Random Forest vs. ORT-H 0.0051 0.0154

Boosting vs. Random Forest 0.0842 0.1684
ORT vs. CART 0.3666 0.3666

mance, but all other pairs are significantly different. This reinforces our conclusion

that while ORT-H improves upon the simple trees of ORT and CART, it does not

reach the state-of-the-art performance exhibited by random forests and boosting.

We conclude by summarizing these computational results with real-world regres-

sion datasets. We found that ORT likely offers a small advantage in performance

over CART, but this difference is not statistically significant. ORT-H improved sig-

nificantly over both CART and ORT, showing that allowing for hyperplane splits leads

to greatly increased performance. However, ORT-H was still significantly weaker than

random forests and boosting for regression problems, unlike in classification where the

addition of hyperplane splits led to OCT-H having comparable performance with both

boosting and random forests.

4.6 Conclusions

In this chapter, we applied the approach we developed for Optimal Classification

Trees to the problem of regression. Following the approach of CART, we restricted
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our attention to regression trees that simply make a constant prediction in each leaf

of the tree.

We formulated the task of finding the Optimal Regression Tree using MIO, which

required only slight modifications to the MIO formulation for Optimal Classification

Trees. Empirically, we found that this MIO formulation was not practically solvable

even on very small datasets, and so we adapted the same local search procedure that

is used to train Optimal Classification Trees to also construct regression trees. This

local search method runs in times much faster than the MIO formulation, and is able

to deliver substantial improvements in objective value over the solutions found by the

MIO solver with a generous time limit.

We again conducted extensive computational experiments to validate and bench-

mark the Optimal Regression Trees against existing methods. Our experiments with

synthetic data largely mirrored the results of the corresponding synthetic experiments

for classification; our Optimal Tree methods deliver significant improvements over

CART in terms of out-of-sample 𝑅2, and also construct trees with significantly fewer

false positive splits, meaning that they can be more safely interpreted. The experi-

ments with real world 26 datasets showed that ORT improved slightly upon CART,

with ORT-H further improving significantly upon both. However, unlike in classifica-

tion, the addition of hyperplane splits did not close the gap with the state-of-the-art

methods, which delivered higher performance than ORT-H.

Overall, the results of our experiments show that while our optimization approach

and the addition of hyperplane splits add value to the regression tree problem, we

are not able to reach state-of-the-art performance with these alone. This is likely

due to our restriction that we make only constant predictions in the leaves, and so

in the next chapter we will consider using more sophisticated prediction functions in

the leaves.
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Chapter 5

Optimal Regression Trees with Linear

Predictions

CART and other classical methods for regression trees generate trees that make only

constant predictions in each leaf of the tree. The predictions made by such trees

correspond to a piecewise constant model over the training space, and as such these

trees may have trouble accurately capturing the structure in the data without fitting

very deep trees and sacrificing some interpretability.

The key reason that constant predictions are used in place of more sophisticated

predictive models is computational speed. When finding the best split at a node, a

predictive model must be fit in each leaf node when evaluating each candidate split.

For a normal split, this means we have to fit 𝑂(𝑛𝑝) regression models in order to find

the best split, which can be prohibitively expensive if fitting the predictive model is

non-trivial.

Most attempts in the literature to fit more comprehensive regression models in the

leaves artificially limit the power of the regression tree to increase the computational

tractability of their approach. The existing methods are also all greedy in nature,

bringing with them all the inherent disadvantages we have demonstrated thus far.

The simplest approach is to first train a regression tree with constant predictions

and then apply the more sophisticated models in the leaves, thus avoiding the cost

of repeatedly fitting models during training. The main drawback to such approaches
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is the disconnect between the tree structure and prediction functions; the tree tends

to be larger than needed due to the limited power of constant predictions, and the

splits are not chosen with the prediction functions in mind. M5 [105] uses a similar

approach to this, where a tree with constant predictions is first trained. At each node

in the tree, a linear regression model is fit, using as predictors only the variables that

appear in splits below this node. If this new linear models outperforms the constant

predictions of the subtree rooted at this node, the subtree is deleted and replaced

with the linear model.

Another approach taken by many methods [34, 81, 63] is to separate the task

of choosing the split variable from the task of choosing the split threshold. These

methods use hypothesis testing to identify the split variable that is “most significant”

in the model, and then proceed to find the optimal split on this variable. This means

that only 𝑂(𝑛) predictive models need to be fit to decide upon a split. However, this

speedup clearly comes at the cost of potentially making the wrong decision regarding

which variable to split on.

It is also possible to reduce the computation required by limiting the power of the

models fit in each leaf. Kim et al. [72] propose a method where each leaf model is

limited to two variables, (chosen by stepwise regression) which also has the benefit of

improving the interpretability of the model. The main drawback is that the algorithm

has no ability to fit more complicated regression models when advantageous to do so;

it is always restricted in power.

Ideally, the regression models in each leaf should be robust to fluctuations in the

data. This would ensure that they do not change too much when testing candidate

splits, thus allowing us to zero in on the correct split location. Additionally, the

models in the leaves should be only as complicated as necessary to fit the data in the

leaf, and no more; if the data is well-described by few or no variables, this is the model

that should be used, but if more complexity is needed, we should use a more detailed

model. We desire simple models for interpretability and to avoid overfitting, but do

not want to blindly impose these conditions and sacrifice performance. Finally, the

algorithm needs to be designed in a fashion that permits efficient training of such
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models without requiring us to limit the power of the tree.

In this chapter, we detail extending the Optimal Trees framework to generate

Optimal Regression Trees with linear predictions in the leaves. We demonstrate that

the training process can be conducted efficiently and that the resulting trees have

state-of-the-art performance whilst maintaining interpretability.

5.1 ORT with Linear Predictions via MIO

In this section, we will modify the MIO formulation for Optimal Regression Trees in

Section 4.2 to generate trees with linear predictions rather than constant predictions.

In the previous MIO formulation, we used the variables 𝛽𝑡 to represent the constant

predictions made in each leaf, and used these predictions to set the fitted values 𝑓𝑖

with the constraint (4.1). It is straightforward to extend this approach to use linear

predictions instead. We will use the variables 𝛽𝑡 and 𝛽0𝑡 to track the prediction at

each leaf, which takes the form

𝑦(x) = 𝛽T
𝑡 x+ 𝛽0𝑡

We then update the constraint (4.1) with the new prediction function:

𝑓𝑖 =
∑︁
𝑡∈𝒯𝐿

(𝛽T
𝑡 x𝑖 + 𝛽0𝑡)𝑧𝑖𝑡, ∀𝑖 ∈ [𝑛], (5.1)

which linearizes in the same fashion to give

−𝑀𝑓 (1− 𝑧𝑖𝑘) ≤ 𝑓𝑖 − (𝛽T
𝑡 x𝑖 + 𝛽0𝑡) ≤𝑀𝑓 (1− 𝑧𝑖𝑘), ∀𝑖 ∈ [𝑛], 𝑡 ∈ 𝒯𝐿, (5.2)

where again 𝑀𝑓 is a sufficiently large constant. We can obtain a set of bounds for the

value of 𝑀𝑓 by noting that the objective value of any feasible solution to the problem,

denoted 𝑧𝐹 , provides an upper bound on the loss at any single point, by considering

a scenario in which all the loss is placed on a single point and because the optimal

loss must be no larger than the loss of any feasible solution. For squared loss, this
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leads to the inequality:

(𝑓𝑖 − 𝑦𝑖)
2 ≤ 𝑧𝐹 , ∀𝑖 ∈ [𝑛] =⇒ |𝑓𝑖| ≤

√
𝑧𝐹 +max

𝑖
|𝑦𝑖|

This implies that at optimality, 𝑓𝑖 and (𝛽T
𝑡 x𝑖 + 𝛽0𝑡) can be at most 2(

√
𝑧𝐹 +

max𝑖 |𝑦𝑖|) apart, and so this is a valid value for 𝑀𝑓 . We can apply similar reasoning

to the absolute loss case to reach the value 𝑀𝑓 = 2(𝑧𝐹 +max𝑖 |𝑦𝑖|). In both cases, we

use the best feasible solution value we have available to us, of which there is always

at least one, being the baseline solution.

We also want the ability to restrict the regression predictions in each leaf to avoid

overfitting and to assist with interpretability. We do this by penalizing the norm of

the regression coefficient vector in each leaf, leading to the following objective:

1

𝐿̂

𝑛∑︁
𝑖=1

𝐿𝑖 + 𝛼 · 𝐶 + 𝜆
∑︁
𝑡∈𝒯𝐿

‖𝛽𝑡‖, (5.3)

where the parameter 𝜆 controls the degree of regularization. We might choose the 𝐿-1

norm to control the magnitude of the coefficients and lead to more robust solutions,

so that they will not vary much as we make small changes inside the tree. In this case,

the norm becomes a sum of absolute values which can be linearized with standard

linear optimization techniques. Alternatively, we can use the 𝐿-0 norm to restrict

the number of non-zero coefficients in each regression prediction to directly pursue

interpretability. In this case, we use the binary variables 𝑟𝑗𝑡 to track whether the 𝑗th

feature is used in the 𝑡th regression equation:

−𝑀𝑟𝑟𝑗𝑡 ≤ 𝛽𝑗𝑡 ≤𝑀𝑟𝑟𝑗𝑡, ∀𝑗 ∈ [𝑝], 𝑡 ∈ 𝒯𝐿 (5.4)

where 𝑀𝑟 is a sufficiently large constant. We do not have an explicit method of

calculating a small, feasible value for this constant. It must be at least max𝑗,𝑡 |𝛽*
𝑗𝑡|

where 𝛽* is the optimal solution. However, note the data can be normalized and so

we expect the optimal solution to not be too large, and therefore a relatively small

constant should suffice in most cases. We then use the 𝑟𝑗𝑡 variables to calculate the
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value of the norm in the objective:

1

𝐿̂

𝑛∑︁
𝑖=1

𝐿𝑖 + 𝛼 · 𝐶 + 𝜆
∑︁
𝑡∈𝒯𝐿

𝑝∑︁
𝑗=1

𝑟𝑗𝑡, (5.5)

We obtain the complete formulation for Optimal Regression Trees with linear

predictions by using these new variables and constraints in place of the corresponding

constant counterparts in the formulations from Section 4.2. For instance, the following

is the ORT formulation (4.2) with linear predictions and using 𝐿-0 regularization:

min
1

𝐿̂

𝑛∑︁
𝑖=1

𝐿𝑖 + 𝛼 · 𝐶 + 𝜆
∑︁
𝑡∈𝒯𝐿

𝑝∑︁
𝑗=1

𝑟𝑗𝑡 (5.6)

s.t. 𝐿𝑖 ≥ (𝑓𝑖 − 𝑦𝑖)
2, ∀𝑖 ∈ [𝑛],

𝑓𝑖 − (𝛽T
𝑡 x𝑖 + 𝛽0𝑡) ≥ −𝑀𝑓 (1− 𝑧𝑖𝑘), ∀𝑖 ∈ [𝑛], 𝑡 ∈ 𝒯𝐿,

𝑓𝑖 − (𝛽T
𝑡 x𝑖 + 𝛽0𝑡) ≤ +𝑀𝑓 (1− 𝑧𝑖𝑘), ∀𝑖 ∈ [𝑛], 𝑡 ∈ 𝒯𝐿,

−𝑀𝑟𝑟𝑗𝑡 ≤ 𝛽𝑗𝑡 ≤𝑀𝑟𝑟𝑗𝑡, ∀𝑗 ∈ [𝑝], ∀𝑡 ∈ 𝒯𝐿

𝐶 =
∑︁
𝑡∈𝒯𝐵

𝑑𝑡,

aT
𝑚x𝑖 ≥ 𝑏𝑚 − (1− 𝑧𝑖𝑡), ∀𝑖 ∈ [𝑛], 𝑡 ∈ 𝒯𝐿, 𝑚 ∈ ℛ(𝑡),

aT
𝑚(x𝑖 + 𝜖) ≤ 𝑏𝑚 + (1 + 𝜖max)(1− 𝑧𝑖𝑡), ∀𝑖 ∈ [𝑛], 𝑡 ∈ 𝒯𝐿, 𝑚 ∈ ℒ(𝑡),∑︁

𝑡∈𝒯𝐿

𝑧𝑖𝑡 = 1, ∀𝑖 ∈ [𝑛],

𝑧𝑖𝑡 ≤ 𝑙𝑡, ∀𝑡 ∈ 𝒯𝐿,
𝑛∑︁

𝑖=1

𝑧𝑖𝑡 ≥ 𝑁min𝑙𝑡, ∀𝑡 ∈ 𝒯𝐿,

𝑝∑︁
𝑗=1

𝑎𝑗𝑡 = 𝑑𝑡, ∀𝑡 ∈ 𝒯𝐵,

0 ≤ 𝑏𝑡 ≤ 𝑑𝑡, ∀𝑡 ∈ 𝒯𝐵,

𝑑𝑡 ≤ 𝑑𝑝(𝑡), ∀𝑡 ∈ 𝒯𝐵 ∖ {1},

𝑧𝑖𝑡, 𝑙𝑡 ∈ {0, 1}, ∀𝑖 ∈ [𝑛], 𝑘 ∈ [𝐾], 𝑡 ∈ 𝒯𝐿,

𝑟𝑗𝑡 ∈ {0, 1}, ∀𝑗 ∈ [𝑝], 𝑡 ∈ 𝒯𝐿,
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𝑎𝑗𝑡, 𝑑𝑡 ∈ {0, 1}, ∀𝑗 ∈ [𝑝], 𝑡 ∈ 𝒯𝐵.

This MIO formulation shares the complexity of the corresponding constant predic-

tion counterpart, so the formulations with squared loss are quadratic MIO problems

and those with absolute loss are linear MIO problems. The addition of the binary

variables 𝑟𝑗𝑡 and more big-𝑀 constraints make these models harder to solve than

their constant prediction counterparts. These formulations exhibit the same issues

with scaling as the other MIO formulations due to the number of variables required

as the training set size increases.

5.2 ORT with Linear Predictions via Local Search

In this section, we will adapt the same local search procedure as before to generate

regression trees with linear predictions in an efficient manner.

As mentioned previously, one of the main challenges in efficiently constructing a

regression tree with linear predictions is the increased cost of fitting regression models

at each stage of the search process rather than simply predicting the mean, which

can be done in constant time. Classical methods for solving least-squares regression

problems using QR-decompositions or bidiagonalization require 𝑂(𝑛𝑝2) time [23].

Moreover, there is limited ability to efficiently update the solution after small changes

during the search procedure, and the solutions produced by this approach are dense

and highly sensitive to noise in the data, meaning that the solution might change

significantly after the addition or removal of a single point in a leaf. All of these are

undesirable traits to embed inside the loss function of our local search.

Instead, our approach makes use of the GLMNet algorithm [48], which solves

the standard elastic net regression problem:

min
𝛽0,𝛽

1

2𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝛽0 − xT
𝑖 𝛽)

2
+ 𝜆𝑃𝛼(𝛽) (5.7)
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where

𝑃𝛼(𝛽) = (1− 𝛼)
1

2
‖𝛽‖22 + 𝛼‖𝛽‖1 (5.8)

If we set 𝛼 = 1 to only use 𝐿-1 regularization (yielding the LASSO [111]), and

denote the fitted values with 𝑓𝑖 = 𝛽0 + xT
𝑖 𝛽, we can rewrite the problem in a simpler

form as

min
𝛽0,𝛽

1

2𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑓𝑖)
2 + 𝜆‖𝛽‖1 (5.9)

The GLMNet algorithm solves this regression problem very efficiently using

coordinate-descent. The method iteratively updates each entry in the solution vec-

tor at very low cost by exploiting the sparsity of the solution vector; if there are 𝑘

non-zeros in the solution, the cost of a single coordinate-descent cycle is 𝑂(𝑘𝑝) plus

𝑂(𝑛𝑝) any time a zero entry of the solution vector becomes non-zero (which is rare

due to the inherent robustness of the method). Compared to the least-squares cost

of 𝑂(𝑛𝑝2), the cost of this coordinate descent approach at 𝑂(𝑘𝑝) plus the occasional

𝑂(𝑛𝑝) represents a significant speedup, especially when the solution vector is very

sparse (𝑘 ≪ 𝑝).

In addition to the fast updates, a coordinate-descent approach also permits warm-

starting the solution process using an existing solution. This is crucial when combined

with the inherent robustness of the solutions to this problem, as the solutions change

very little at each stage of the search process, so it typically takes very few iterations

to reach the optimal solution when warmstarting with the optimal solution from the

previous step.

Now we will see how we can apply the coordinate-descent approach of GLMNet

to Problem (5.6) with 𝐿-1 regularization. Our overall objective is of the form

min
1

𝐿̂

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑓𝑖)
2 + 𝜆

∑︁
𝑡∈𝒯𝐿

‖𝛽𝑡‖1, (5.10)

that is, we want to minimize the squared loss of the fitted values 𝑓𝑖 with a regulariza-

tion penalty on the regression coefficients 𝛽. Let ℐ𝑡 denote the set of points contained
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in leaf 𝑡. We can then rewrite the objective as

min
∑︁
𝑡∈𝒯𝐿

(︂
1

𝐿̂

∑︁
𝑖∈ℐ𝑡

(𝑦𝑖 − 𝑓𝑖)
2 + 𝜆‖𝛽𝑡‖1

)︂
. (5.11)

Note that this objective is separable in 𝑡, and so we can solve for each leaf sepa-

rately. The problem faced in each leaf is

min
1

𝐿̂

∑︁
𝑖∈ℐ𝑡

(𝑦𝑖 − 𝑓𝑖)
2 + 𝜆‖𝛽𝑡‖1, (5.12)

which we seek to solve using the GLMNet algorithm. We can do so by rewriting

this problem into the same form as (5.9):

min
1

2 |ℐ𝑡|
∑︁
𝑖∈ℐ𝑡

(𝑦𝑖 − 𝑓𝑖)
2 +

𝜆𝐿̂

2 |ℐ𝑡|
‖𝛽𝑡‖1, (5.13)

and so therefore we can solve the regression problem at each leaf 𝑡 using the GLMNet

algorithm with 𝜆𝐺𝐿𝑀 = 𝜆𝐿̂/2 |ℐ𝑡| on the subset of data contained in that leaf. Doing

this in each leaf separately will yield regression coefficients that minimize the overall

objective (5.10).

The local search therefore proceeds as for constant-prediction regression trees in

Section 4.3, except that each time we are required to evaluation the loss of the tree,

we update the current regression predictions in each leaf by performing coordinate-

descent cycles for the problems (5.13) until converged. We then sum the final objective

values of these problems across the leaves (with each leaf weighted by 2 |ℐ𝑡|/𝐿̂) to get

the total loss of the tree.

Hyperparameter tuning

Using linear regression predictions in each leaf introduces the regularization parameter

𝜆 as a new tuning parameter that needs to by specified. It would be possible to use

the same procedure as in Algorithm 2.7 and add an additional outer loop over possible

values of 𝜆, but this would lead to an expensive two-dimensional grid search.
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Instead, we have found the following procedure to give good results empirically,

based on our observation that the effects of depth and 𝜆 on the solution quality are

typically independent. First, the depth is tuned using Algorithm 2.7. We then fix

this depth, and tune 𝜆 using Algorithm 2.7 with the loop over depth replaced by a

loop over 𝜆. We take the best value of 𝜆 and the corresponding value of 𝛼 as the final

tuned hyperparameter values.

5.3 Experiments with Synthetic Datasets

In this section, we use experiments with synthetic datasets to examine the perfor-

mance of Optimal Regression Trees with linear predictions. There are two main goals

of these experiments. The first is to expose the trees with linear predictions to data

where trees with constant predictions are optimal, and determine whether the trees

with linear predictions overfit the data. The second goal is to evaluate the perfor-

mance of trees with linear predictions on more complicated datasets where the trees

with constant predictions do not perform strongly, and see whether the more powerful

prediction functions in each leaf lead to better performance on such datasets.

The experimental setup is identical to that in Section 4.4, with the addition of the

Optimal Regression Trees with linear predictions, both with (ORT-HL) and without

(ORT-L) hyperplane splits. We used Algorithm 2.7 to tune ORT-L and ORT-LH,

with outer loops over both the maximum depth and regularization parameter 𝜆.

Ground truth trees with constant predictions

Our first aim is to compare the performance of the methods on datasets that have

been generated according to a ground truth tree with constant predictions. This will

allow us to determine whether permitting more powerful predictive models in the

leaves causes the model to overfit the data.
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Figure 5-1: Synthetic experiments showing the effect of training set size.
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Figure 5-2: Synthetic experiments showing the effect of number of features.
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The effect of the amount of training data

In the first experiment we measure the impact of increasing amounts of training data

on the performance of each method. The results are shown in Figure 5-1. We can see

that in all three metrics, ORT and ORT-L perform near-identically, and are both the

strongest methods in terms of out-of-sample 𝑅2.

The effect of dimensionality

The second experiment measures the effect of the number of features in the dataset on

the performance of the methods. Figure 5-2 shows the results. Again we see that the

performance of ORT and ORT-L is similar, with ORT-L actually performing slightly
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Figure 5-3: Synthetic experiments showing the effect of number of random restarts.
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Figure 5-4: Synthetic experiments showing the effect of feature noise.
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stronger than ORT in places.

The effect of the number of random restarts

The next experiment considers varying the number of random restarts used to train

the optimal tree methods (and the number of trees used in the ensemble methods).

The results are presented in Figure 5-3. ORT and ORT-L again perform similarly,

although ORT-L has a sizable advantage in 𝑅2 for very small numbers of random

restarts, as well as a slightly lower FDR over all values.
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Figure 5-5: Synthetic experiments showing the effect of label noise.
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The effect of noise in the training data

The final two experiments show the effect of noise in the training set on the perfor-

mance of the methods. Figures 5-4 and 5-5 show the results for each method under

the addition of increasing noise in the features and labels, respectively. We see in

both experiments that the performance of ORT and ORT-L is roughly similar.

Summary for ground truth trees with constant predictions

In all of the experiments using data generated by ground truth trees with constant

predictions, we observed that the performance of ORT and ORT-L was near-identical.

This gives us strong evidence that despite the increased power of ORT-L, it is not

at risk of overfitting data that are described by simpler models. In particular, our

validation procedure is able to correctly identify both the correctly-sized tree but also

the correct degree of regularization in the linear predictions for a given dataset.

Ground truth trees with linear predictions

Next, we consider generating the data from ground truth trees with linear prediction

models in the leaves. This will allow us to measure the ability of Optimal Trees with

linear predictions to fit more complicated datasets where Optimal Trees with constant

predictions perform poorly.
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Figure 5-6: Synthetic experiments showing the effect of regression density.
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Figure 5-6 shows an experiment where we adjust the maximum density of the

regression equations in each leaf of the ground truth tree. In each leaf of the ground

truth tree, we generate a random linear prediction model with a maximum number of

coefficients given by the regression density, and then use these models to generate the

labels for the data. In terms of 𝑅2, we see that ORT-L performs consistently regardless

of the regression density, indicating that we are able to correctly identify the correct

tree and also the correct amount of regularization in the linear regression models in

the leaves. On the other hand, CART and ORT both drop off in performance as the

regression density increases and their constant predictions become increasingly poor

at modeling the truth in the data. Random forests and boosting also decrease in

performance as the regression density increases, but this decrease is a lot slower than

for CART and ORT, indicating that these methods are better able to approximate the

linear relationships in the data. All three tree methods perform similarly in terms of

TDR, but as we might expect the FDR of the parallel tree methods increases sharply

with the regression density, as more splits are required to model the linear trends in

the data, and such splits are not related to the generating ground truth. Conversely,

the FDR of ORT-L is constant as the regression density is increased, showing that it

can learn the whole truth and nothing but the truth regardless of the complexity of

the true linear regression models that generated the data.
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Figure 5-7: Synthetic experiments showing the effect of split density.
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Ground truth trees with linear predictions and hyperplane splits

Finally, we consider generating ground truth trees that have both linear predictions

in the leaves, and hyperplane splits at the nodes. This allows us to benchmark the

performance of ORT-LH and its ability to learn complicated structure in the data.

First, we consider varying the maximum density of the hyperplane splits in the

ground truth tree, with the maximum density of the true linear regression equations

in each leaf fixed at 5. This gives trees with complicated regression functions and

varying complexities of hyperplane splits. The results are shown in Figure 5-7. We

can see that when the split density is 1 and the tree has parallel splits only, the results

are similar to the prior results for regression density 5 in Figure 5-6. We also see that

ORT-LH performs the similarly to ORT-L, indicating that ORT-LH is not overfitting

despite allowing for hyperplane splits. As the split density increases, the problem

becomes more difficult and the performance of all methods drops. However, the

two hyperplane methods, ORT-H and ORT-LH, decrease more slowly in performance

that the others. As expected, the strongest performing method is ORT-LH, indicating

that it is able to effectively learn the structure of the trees with linear predictions and

hyperplane splits.

For the second test, we fix the maximum split density to 3 and vary the density

of the regression predictions in each leaf. Figure 5-8 shows the results. Again we see

that ORT-LH is the strongest performing method, followed by ORT-H. The results
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Figure 5-8: Synthetic experiments showing the effect of regression density.
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are largely the same across all regression densities, which combined with the previous

test would indicate that the primary determinant of performance in this setting is

the complexity of the splits in the tree rather than the complexity of the predictions

in each leaf.

Summary

We conclude this section with a summary of the results across all the synthetic ex-

periments conducted.

First and most importantly, we saw that the different classes of trees were able

to correctly learn the structure of the ground truth trees of the same type, meaning

that ORT-L could correctly learn when the truth had linear predictions, and ORT-LH

performed well when the truth had both linear predictions and hyperplanes. This is

clear evidence that our training procedure is able to effectively train trees of the class

we are seeking.

Secondly, we found that the increased flexibility of trees with linear predictions

and/or hyperplane splits did not lead them to overfit in scenarios where the true

model was of a simpler class. For instance, ORT-L did not overfit when the true

predictions were constant, and ORT-LH did not overfit when the ground truth tree

had just parallel splits and linear predictions. This demonstrates that there is no

concern with choosing a model class that is “too powerful” for a given dataset; the
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only tradeoff is the increased computational time.

Finally, we found that our methods compared favorably to both random forests

and boosted trees in all scenarios, particular as the ground truth models became more

complicated.

5.4 Experiments with Real-World Datasets

In this section, we evaluate the performance of Optimal Regression Trees with Linear

Predictions, both with and without hyperplane splits, on the same set of real-world

datasets as in Section 4.5. This will allow us to evaluate the impact of allowing for the

more complicated linear predictions in each leaf of the tree in a variety of practical

examples.

Experimental Setup

The experimental setup and sample of 26 datasets was the same for these experiments

as in Section 2.6. We added ORT-L and ORT-LH to the pool of methods with 𝑅 = 100

random restarts, 𝐻 = 5 random hyperplane restarts and minbucket = 1, with the

maximum depth 𝐷 and regularization parameter 𝜆 tuned as described in Section 5.3.

Results

In Figure 5-9 we present the mean out-of-sample 𝑅2 across the 26 for each method,

as a function of the maximum tree depth allowed. Note that compared to Figure 4-17

the only difference is the addition of the ORT-L and ORT-LH methods.

We can see that the two new methods perform very strongly. ORT-L has higher

performance than boosting at low depths, but is overtaken by boosting as the depth

increases. At depth 10, the performance of ORT-L is roughly equivalent to random

forests and performs slightly worse than boosted trees. ORT-LH is the strongest

performing method at small depths, and at larger depths performs comparably to

boosted trees, ahead of both random forests and ORT-L.

162



Table 5.1: Performance results for regression methods (with maximum depth 10) on
each of the 26 datasets. For each method, we show the out-of-sample 𝑅2 followed by
the method’s rank on the dataset in parentheses. A rank of 1 indicates the method
had the best performance on a dataset and a rank of 5 indicates the method performed
worst.

Dataset CART ORT ORT-H ORT-L ORT-LH RF Boosting

abalone 0.460 (6) 0.457 (7) 0.519 (4) 0.545 (2) 0.549 (1) 0.477 (5) 0.536 (3)
ailerons 0.746 (6) 0.736 (7) 0.806 (5) 0.845 (1) 0.836 (3) 0.832 (4) 0.844 (2)
airfoil-self-noise 0.816 (6) 0.814 (7) 0.863 (5) 0.893 (4) 0.896 (3) 0.910 (2) 0.941 (1)
auto-mpg 0.771 (5) 0.771 (6) 0.766 (7) 0.845 (3) 0.838 (4) 0.847 (2) 0.849 (1)
automobile 0.581 (6) 0.590 (5) 0.495 (7) 0.688 (3) 0.631 (4) 0.732 (2) 0.736 (1)
cart-artificial 0.948 (3.5) 0.948 (3.5) 0.948 (6) 0.948 (1) 0.948 (2) 0.945 (7) 0.948 (5)
communities-and-crime 0.409 (6) 0.507 (5) 0.390 (7) 0.721 (2) 0.749 (1) 0.702 (3) 0.679 (4)
computer-hardware 0.789 (7) 0.858 (5) 0.797 (6) 0.955 (2) 0.973 (1) 0.929 (3) 0.929 (4)
concrete-compressive 0.453 (6) 0.364 (7) 0.569 (5) 0.862 (2) 0.873 (1) 0.690 (4) 0.792 (3)
concrete-flow 0.208 (7) 0.251 (6) 0.380 (5) 0.461 (2) 0.476 (1) 0.437 (3) 0.396 (4)
concrete-slump 0.172 (7) 0.217 (6) 0.570 (1) 0.260 (5) 0.277 (3) 0.359 (2) 0.272 (4)
cpu-act 0.970 (6) 0.966 (7) 0.975 (5) 0.985 (2) 0.984 (3) 0.981 (4) 0.985 (1)
cpu-small 0.959 (6) 0.959 (7) 0.967 (5) 0.974 (4) 0.974 (2) 0.974 (3) 0.979 (1)
elevators 0.686 (7) 0.689 (6) 0.874 (4) 0.899 (2) 0.912 (1) 0.815 (5) 0.877 (3)
friedman-artificial 0.846 (7) 0.852 (6) 0.920 (4) 0.954 (2) 0.956 (1) 0.896 (5) 0.952 (3)
housing 0.705 (7) 0.750 (5) 0.753 (4) 0.748 (6) 0.804 (3) 0.852 (2) 0.867 (1)
hybrid-price 0.512 (5) 0.464 (7) 0.509 (6) 0.620 (2) 0.648 (1) 0.615 (3) 0.577 (4)
kin8nm 0.442 (7) 0.498 (6) 0.752 (3) 0.736 (4) 0.851 (1) 0.659 (5) 0.776 (2)
lpga-2008 0.594 (7) 0.624 (6) 0.647 (5) 0.863 (1) 0.851 (2) 0.770 (4) 0.775 (3)
lpga-2009 0.802 (6) 0.786 (7) 0.848 (5) 0.880 (4) 0.904 (1) 0.890 (2) 0.885 (3)
parkinsons-motor 0.159 (6) 0.159 (7) 0.241 (4) 0.235 (5) 0.281 (3) 0.333 (2) 0.351 (1)
parkinsons-total 0.144 (7) 0.163 (6) 0.283 (4) 0.249 (5) 0.316 (3) 0.334 (2) 0.361 (1)
vote-for-clinton 0.315 (6) 0.286 (7) 0.354 (5) 0.377 (4) 0.395 (3) 0.408 (1) 0.404 (2)
wine-quality-red 0.286 (6) 0.263 (7) 0.299 (5) 0.340 (3) 0.304 (4) 0.429 (1) 0.394 (2)
wine-quality-white 0.279 (7) 0.282 (6) 0.300 (5) 0.353 (3) 0.349 (4) 0.442 (2) 0.497 (1)
yacht-hydrodynamics 0.988 (7) 0.991 (4) 0.991 (6) 0.992 (3) 0.991 (5) 0.994 (2) 0.996 (1)

Average rank 6.250 6.096 4.923 2.962 2.346 3.077 2.346
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Figure 5-9: Mean out-of-sample 𝑅2 for each method across all 26 datasets.
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Table 5.1 presents the average out-of-sample 𝑅2 and performance rank for each

method on each dataset at the maximum depth of 10, as well as the average rank

of each method. We can see that the results for CART, ORT and ORT-H mirror

those in Section 4.5—ORT improves slightly upon CART and ORT-H further upon

ORT, but all three are still significantly less powerful than random forests. We see

that ORT-L has an average rank similar to random forests and ORT-LH performs

similarly to boosting.

To quantify the significance of the differences in average rank, Table 5.2 shows

the p-values for pairwise comparisons between each pair of methods, appropriately

adjusted to account for multiple comparisons as described in Section 3.5. We can

see that there are two groups of methods that have statistically indistinguishable

performance: CART/ORT and ORT-L/ORT-LH/Random Forest/Boosting. In par-

ticular, the two strongest methods ORT-LH and boosting have an unadjusted p-value

of around 0.98, indicating they are nearly identical in performance.

Together, these results on real-world datasets give evidence that allowing for lin-

ear regression models in the leaves of the regression trees provides a significant and

practical increase in performance. The methods with linear models in the leaves,

ORT-L and ORT-LH, significantly outperform their counterparts with only constant
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Table 5.2: Pairwise significance tests for performance of regression methods (with
maximum depth 10) across 26 datasets. The comparisons are presented in order of
significance. For each comparison, the strongest-performing method is both bolded
and stated first in the comparison. The p-values are found using Wilcoxon signed-
rank test, and the adjusted p-values are calculated using the Holm-Bonferroni method
to account for multiple comparisons. All results above the dividing line are significant
at the 95% level.

Comparison p-value Adjusted p-value

ORT-L vs. CART ∼ 10−8 ∼ 10−6

ORT-LH vs. CART ∼ 10−8 ∼ 10−6

ORT-LH vs. ORT ∼ 10−7 ∼ 10−6

Random Forest vs. CART ∼ 10−7 ∼ 10−6

Random Forest vs. ORT ∼ 10−7 ∼ 10−6

Boosting vs. CART ∼ 10−7 ∼ 10−6

Boosting vs. ORT ∼ 10−7 ∼ 10−6

ORT-L vs. ORT ∼ 10−7 ∼ 10−6

ORT-LH vs. ORT-H ∼ 10−5 0.0003
Boosting vs. ORT-H ∼ 10−4 0.0004
ORT-H vs. CART 0.0002 0.0021
ORT-L vs. ORT-H 0.0010 0.0104
ORT-H vs. ORT 0.0020 0.0177

Random Forest vs. ORT-H 0.0047 0.0375

ORT-LH vs. ORT-L 0.0312 0.2185
Boosting vs. Random Forest 0.0842 0.5052

Boosting vs. ORT-L 0.2914 1.0000
ORT vs. CART 0.3666 1.0000

ORT-LH vs. Random Forest 0.5995 1.0000
Random Forest vs. ORT-L 0.9007 1.0000

Boosting vs. ORT-LH 0.9801 1.0000
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predictions. Moreover, the performance of these two methods is on par with random

forests and boosting, with no statistical evidence of any difference in performance

between the four methods.

5.5 Conclusions

In this chapter, we extended the classical regression tree model to use linear regression

models in each leaf of the tree rather than simply using a constant prediction.

We used the flexibility of MIO to design a formulation for Optimal Regression

Trees with linear predictions that generates a tree with the combination of splits and

regularized linear regression models that gives the best training error. This allows us

to avoid having to restrict the power of the leaf regression models, and also ensures

the regression models are only as complicated as necessary to explain the data well.

We adapted the local search procedure from earlier chapters to efficiently train these

trees, using a fast coordinate descent scheme to update the regression models in the

leaves as the local search proceeds.

We conducted experiments with both synthetic and real-world datasets to measure

the impact of adding linear predictions to the leaves. We found that these trees

are able to correctly learn structure in data generated by piecewise-linear models,

and moreover that they performed better than random forests and boosting on such

datasets. The experiments with real-world datasets provided comprehensive evidence

of the lift in performance resulting from the addition of linear predictions to the

leaves, and across the sample of datasets, the performance of these regression trees

was indistinguishable from random forests and boosting.

Overall, our computational experiments demonstrate that the addition of linear

predictions to the leaves of Optimal Regression Trees leads to a significant increase

in performance, resulting in methods that are competitive with the state of the art.

Together, Chapters 2–5 provide evidence that Optimal Trees are practically relevant

for both classification and regression, with our best approaches for each problem type

performing comparably to random forests and boosted trees, without sacrificing the
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interpretability of a single decision tree.
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Chapter 6

Optimal Prescription Trees

The proliferation in volume, quality, and accessibility of highly granular data has

enabled decision makers in various domains to seek customized decisions at the indi-

vidual level. This personalized decision making framework encompasses a multitude

of applications. In online advertising internet companies display advertisements to

users based on the user search history, demographic information, geographic loca-

tion, and other available data they routinely collect from visitors of their website.

Specifically targeting these advertisements by displaying them to appropriate users

can maximize their probability of being clicked, and can improve revenue. In person-

alized medicine, we want to assign different drugs/treatment regimens/dosage levels

to different patients depending on their demographics, past diagnosis history and ge-

netic information in order to maximize medical outcomes for patients. By taking into

account the heterogeneous responses to different treatments among different patients,

personalized medicine aspires to provide individualized, highly effective treatments.

In this chapter, we consider the problem of prescribing the best option from among

a set of predefined treatments to a given sample (patient or customer depending on

context) as a function of the sample’s features. We have access to observational

data of the form {(x𝑖, 𝑦𝑖, 𝑧𝑖)}𝑛𝑖=1, which comprises of 𝑛 observations. Each data point

(x𝑖, 𝑦𝑖, 𝑧𝑖) corresponds to the features x𝑖 ∈ R𝑑 of the 𝑖th sample, the assigned treatment

𝑧𝑖 ∈ [𝑚], and the corresponding outcome 𝑦𝑖 ∈ R. We use 𝑦(1), . . . , 𝑦(𝑚) to denote the

𝑚 “potential outcomes” resulting from applying each of the 𝑚 respective treatments.
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There are three key challenges for designing personalized prescriptions for each

sample as a function of their observed features:

1. While we have observed the outcome of the administered treatment for each

sample, we have not observed the counterfactual outcomes, that is the outcomes

that would have occurred had another treatment been administered. Note that

if this information was known, then the prescription problem reduces to a stan-

dard multi-class classification problem. We thus need to infer the counterfactual

outcomes.

2. The vast majority of the available data is observational in nature as opposed

to data from randomized trials. In a randomized trial, different samples are

randomly assigned different treatments, while in an observational study, the

assignment of treatments potentially, and often, depends on features of the

sample. Different samples are thus more or less likely to receive certain treat-

ments and may have different outcomes than others that were offered different

treatments. Consequently, our approach needs to take into account the bias

inherent in observational data.

3. Especially for personalized medicine, the proposed approach needs to be inter-

pretable, that is easily understandable by humans. Even in high speed online

advertising, one needs to demonstrate that the approach is fair, appropriate,

and does not discriminate people over certain features such as race, gender,

age, etc. In our view interpretability is highly desirable always, and a necessity

in many contexts.

We seek a function 𝜏 : R𝑑 → [𝑚] that selects the best treatment 𝜏(x) out of the

𝑚 options given the sample features x. In doing so, we need to be both “optimal”

and “accurate”. We thus consider two objectives:

1. Assuming that smaller outcomes 𝑦 are preferable (for example, sugar levels for

personalized diabetes management), we want to minimize 𝐸[𝑦(𝜏(x))], where

the expectation is taken over the distribution of outcomes for a given treatment
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policy 𝜏(x). Given that we only have data, we rewrite this expectation as

𝑛∑︁
𝑖=1

(︂
𝑦𝑖I[𝜏(x𝑖) = 𝑧𝑖] +

∑︁
𝑡̸=𝑧𝑖

𝑦𝑖(𝑡)I[𝜏(x𝑖) = 𝑡]

)︂
, (6.1)

where 𝑦𝑖(𝑡) denotes the unknown counterfactual outcome that would be ob-

served if sample 𝑖 were to be assigned treatment 𝑡. We refer to the objective

function (6.1) as the prescription error.

2. We further want to design treatment 𝜏(x) that accurately estimates the coun-

terfactual outcomes. For this reason, our second objective is to minimize[︃
𝑛∑︁

𝑖=1

(𝑦𝑖 − 𝑦𝑖(𝑧𝑖))
2

]︃
, (6.2)

that is we seek to minimize the squared prediction error for the observed data.

Given our desire for optimality and accuracy, we propose in this chapter to seek a

policy 𝜏(x) that optimizes a convex combination of the two objectives (6.1) and (6.2):

𝜇

[︃
𝑛∑︁

𝑖=1

(︂
𝑦𝑖I[𝜏(x𝑖) = 𝑧𝑖] +

∑︁
𝑡̸=𝑧𝑖

𝑦𝑖(𝑡)I[𝜏(x𝑖) = 𝑡]

)︂]︃
+(1−𝜇)

[︃
𝑛∑︁

𝑖=1

(𝑦𝑖 − 𝑦𝑖(𝑧𝑖))
2

]︃
, (6.3)

where the prescription factor 𝜇 is a hyperparameter that controls the tradeoff between

the prescription and the prediction error.

Related Literature

In this section, we present some related approaches to personalization in the liter-

ature and how they relate to our work. We present some methodological papers

by researchers in statistics and operations research, followed by a few papers in the

medical literature.
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Learning the outcome function for each treatment

A common approach in the literature is to estimate each sample’s outcome under a

particular treatment, and recommend the treatment that predicts the best prognosis

for that sample. Formally, this is equivalent to estimating the conditional expectation

E[𝑌 |𝑍 = 𝑡,𝑋 = 𝑥] for each 𝑡 ∈ [𝑚], and assign the treatment that predicts the lowest

outcome to a sample. For instance, these conditional means could be estimated by

regressing the outcomes against the covariates of samples who received treatment 𝑡

separately. This approach has been followed historically by several authors in clinical

research (for example [45]), and more recently by researchers in statistics [102] and

operations research [19]. The online version of this problem, called the contextual

bandit problem, has been studied by several authors [75, 53, 6]) in the multi-armed

bandit literature [52]. These papers use variants of linear regression to estimate the

treatment function for each arm all while ensuring sufficient exploration, and picking

the best treatment based on the 𝑚 predictions for a given sample.

In the context of personalized diabetes management, Bertsimas et al. [19] use care-

fully constructed 𝑘−nearest neighbors to estimate the counterfactuals, and prescribe

the treatment option with the best predicted outcome if the expected improvement

(over the status quo) exceeds a threshold 𝛿. The parameters, 𝑘 and 𝛿, used as part

of this approach are themselves learned from the data.

More generally in the fields of operations research and management science, Bert-

simas and Kallus [11] consider the problem of prescribing optimal decisions by directly

learning from data. In this work, they adapt powerful machine learning methods and

encode them within an optimization framework to solve a wide range of decision

problems. In the context of revenue management and pricing, Bertsimas and Kallus

[12] consider the problem of prescribing the optimal price by learning from historical

demand and other side information, but taking into account that the demand data is

observational. Specifically, historical demand data is available only for the observed

price and is missing for the remaining price levels.

Effectively, regress-and-compare approaches inherently encode a personalization
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framework that consists of a (shallow) decision tree of depth one. To see this, consider

a problem with 𝑚−arms where this approach involves estimating functions 𝑓𝑖 for

computing the outcomes of samples that received arm 𝑖, for each 1 ≤ 𝑖 ≤ 𝑚. This

prescription mechanism can be represented as splitting the feature space into 𝑚 leaves,

with the first leaf constituting all the subjects who are recommended arm 1 and so

on. The 𝑖−th leaf is given by the region {𝑥 ∈ R𝑑 : 𝑓𝑖(𝑥) < 𝑓𝑗(𝑥) ∀𝑗 ̸= 𝑖, 1 ≤

𝑗 ≤ 𝑚}. However, the individual functions 𝑓 can be highly nonlinear which hurts

interpretability. Additionally, using only the samples who were administered arm 𝑖 to

compute each 𝑓𝑖 results in using only a subset of the training data for each of these

computations and the 𝑓𝑖’s not interacting with each other while learning, which can

potentially lead to less effective decision rules.

Statistical learning based approaches

Another relatively recent approach involves reformulating this problem as a weighted

multi-class classification problem based on imputed propensity scores, and using off

the shelf methods/solvers available for such problems. Propensity scores are defined

as the conditional probability of a sample receiving a particular treatment given

his/her features [107]. Clearly, for a two arm randomized control trial, these values

are 0.5 for each sample. For problems where these scores are known and two armed

studies, Zhou et al. [123] propose a weighted SVM based approach to learn a classifier

that prescribes one of the two treatment options. However, this analysis is restricted

to settings where these scores are perfectly known and predefined in the trial design,

e.g., randomized clinical trials (propensities are constant) or stratified designs (where

the dependence of the treatment assignment on the covariates is known a priori).

In observational studies, these probabilities are typically not known, and hence are

usually estimated via maximum likelihood estimation. However, there are multiple

proposed methods for estimating these scores, e.g., using machine learning [119] or

as primarily covariate balancing [67], and the choice of method is not clear a priori.

Once these probabilities are known or estimated, the average outcome is computed

using approaches based on the inverse probability of treatment weighting estimator.

173



This involves multiplying the observed outcome by the inverse of the propensity score

(this approach is also referred to as importance/rejection sampling in the machine

learning literature). While this method has desirable asymptotic properties and low

bias, dividing the outcome by the estimated probabilities may lead to unstable, high

variance estimates for small samples.

Tree based approaches

Continuing in the spirit of adapting machine learning approaches, Kallus [70] pro-

poses personalization trees (and forests), which adapt regular classification trees [25]

to directly optimize the prescription error. The key differences from our approach

are that we modify our objective to account for the prediction error, and use the

methodology introduced in Chapters 2–5 to design near optimal trees, which im-

proves performance significantly. Athey and Imbens [3] and Wager and Athey [118]

also use a recursive splitting procedure of the feature space to construct causal trees

and causal forests, respectively, which estimate the causal effect of a treatment for a

given sample, or construct confidence intervals for the treatment effects, but not ex-

plicit prescriptions or recommendations which is the main point of the current paper.

Also, causal trees (or forests) are designed exclusively for studies comparing binary

treatments. Additional methods that build on causal forests are proposed in the re-

cent work of Powers et al. [101], who develop nonlinear methods, e.g., causal MARS

(Multivariate Additive Regression Splines), designed to provide better estimates of

the personalized average treatment effect in high dimensional problems. The causal

MARS approach uses nonlinear functions, which are added to the basis in a greedy

manner, as regressors for predicting outcomes via linear regression for each arm, but

uses a common set of basis functions for both arms.

One of the advantages of these recent approaches—weighted classification or tree

based methods—over regress and compare based approaches is that they use all of

the training data rather than breaking down the problem into 𝑚 (where 𝑚 is the

number of arms) subproblems, each using a separate subset of the data. This key

modification increases the efficiency of learning, which results in better estimates of
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personalized treatment effects for smaller sizes of the training data.

Personalization in medicine

Heterogeneity in patient response and the potential benefits of personalized medicine

have also been discussed in the medical literature. As an illustration of heterogeneity

in responses, a certain drug that works for a majority of individuals may not be ap-

propriate for other subsets of patients, e.g., in general older patients tend to have poor

outcomes independent of any treatment [79]. In an example of breast cancer, Gort

et al. [54] find that even when patients receive identical treatments, heterogeneity of

the disease at the molecular level may lead to varying clinical outcomes. Thus, per-

sonalized medicine can be thought of as a framework for utilizing all this information,

past data, and patient level characteristics to develop a rule that assigns treatments

best suited for each patient. These treatment rules have provided high quality rec-

ommendations, e.g., in cystic fibrosis [46] and mental illness [68], and can potentially

lead to significant improvements in health outcomes and reduce costs.

Contributions

We propose an approach that generalizes the methods for predictive trees in Chap-

ters 2–5 to create prescriptive trees that are interpretable, highly scalable, generaliz-

able to multiple treatments, and either outperform out of sample or are comparable

with several state of the art methods on synthetic and real world data. Specifically,

the key characteristics of our method include:

∙ Interpretability: Decision trees are highly interpretable. The trees produced

by our approach are highly interpretable and provide intuition on the important

features that lead to a sample being assigned a particular treatment.

∙ Scalability: Similarly to predictive trees, prescriptive trees scale to problems

with 𝑛 in 100,000s and 𝑑 in the 10,000s in seconds when they use constant

predictions in the leaves and in minutes when they use a linear model.
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∙ Generalizable to multiple treatments: Prescriptive trees can be applied

with multiple treatments. An important desired characteristic of a prescriptive

algorithm is its generalizability to handle the case of more than two possible

arms. As an example, a recent review by Baron et al. [5] found that almost 18%

of published randomized control trials (RCTs) in 2009 were multi-arm clinical

trials, where more than two new treatments are tested simultaneously. Multi-

arm trials are attractive as they can greatly improve efficiency compared to

traditional two arm RCTs by reducing costs, speeding up recruitments of par-

ticipants, and most importantly, increasing the chances of finding an effective

treatment [98]. On the other hand, two arm trials can force the investigator to

make potentially incorrect series of decisions on treatment, dose or assessment

duration [98]. Rapid advances in technology have resulted in almost all diseases

having multiple drugs at the same stage of clinical development, e.g., 771 drugs

for various kinds of cancer are currently in the clinical pipeline [33]. This em-

phasizes the importance of methods that can handle trials with more than two

treatment options.

∙ Highly effective prescriptions: In a series of experiments with real and

synthetic data, we demonstrate that prescriptive trees either outperform out of

sample or are comparable with several state of the art methods on synthetic

and real world data.

Given their combination of interpretability, scalability, generalizability and per-

formance, it is our belief that prescriptive trees are an attractive alternative for per-

sonalized decision making.

In this chapter, we describe the methodology for creating optimal prescriptive

trees (OPT) and present improvements to this OPT methodology using improved

counterfactual estimates. We also provide evidence of the benefits of this method

with the help of synthetic and real world examples.
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6.1 Optimal Prescriptive Trees

In this section, we motivate and present the OPT algorithm that trains prescriptive

trees to directly minimize the objective presented in Problem (6.3) using a decision

rule that takes the form of a prescriptive tree; that is, a decision tree that in each leaf

prescribes a common treatment for all samples that are assigned to that leaf of the

tree. Our approach is to estimate the counterfactual outcomes using this prescriptive

tree during the training process, and therefore jointly optimize the prescription and

the prediction error.

Optimal Prescriptive Trees with Constant Predictions

Observe that a decision tree divides the training data into neighborhoods where the

samples are similar. We propose using these neighborhoods as the basis for our

counterfactual estimation. More concretely, we will estimate the counterfactual 𝑦𝑖(𝑡)

using the outcomes 𝑦𝑗 for all samples 𝑗 with 𝑧𝑗 = 𝑡 that fall into the same leaf of

the tree as sample 𝑖. An immediate method for estimation is to simply use the mean

outcome of the relevant samples in this neighborhood, giving the following expression

for 𝑦𝑖(𝑡):

𝑦𝑖(𝑡) =
1

|{𝑗 : x𝑗 ∈ 𝒳𝑙(𝑖), 𝑧𝑗 = 𝑡}|
∑︁

𝑗:x𝑗∈𝒳𝑙(𝑖),𝑧𝑗=𝑡

𝑦𝑗, (6.4)

where 𝒳𝑙(𝑖) is the leaf of the prescription tree into which x𝑖 falls.

Substituting this back into Problem (6.3), we want to find a prescriptive tree 𝜏

that solves the following problem:

min
𝜏(.)

𝜇

[︃
𝑛∑︁

𝑖=1

(︂
𝑦𝑖I[𝜏(x𝑖) = 𝑧𝑖] +

∑︁
𝑡̸=𝑧𝑖

∑︀
𝑗:x𝑗∈𝒳𝑙(𝑖),𝑧𝑗=𝑡 𝑦𝑗

|{𝑗 : x𝑗 ∈ 𝒳𝑙(𝑖), 𝑧𝑗 = 𝑡}|
I[𝜏(x𝑖) = 𝑡]

)︂]︃

+ (1− 𝜇)

⎡⎣ 𝑛∑︁
𝑖=1

⎛⎝𝑦𝑖 −
1

|{𝑗 : x𝑗 ∈ 𝒳𝑙(𝑖), 𝑧𝑗 = 𝑧𝑖}|
∑︁

𝑗:x𝑗∈𝒳𝑙(𝑖),𝑧𝑗=𝑧𝑖

𝑦𝑗

⎞⎠2⎤⎦ .

(6.5)

We note that when 𝜇 = 1, we obtain the same objective function as Kallus [70],
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Figure 6-1: Test prediction and personalization error as a function of 𝜇
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which means this objective is an unbiased and consistent estimator for the prescription

error. We note that in this work they attempted to solve Problem (6.5) to global

optimality using a MIO formulation based on an earlier version of Optimal Trees [10].

This approach did not scale beyond shallow trees and small datasets, and so they

resorted to using a greedy CART-like heuristic to solve the problem instead. The

approach we describe, using the local search approach presented in earlier chapters

of the thesis, is practical and scales to large datasets while solving in tractable times.

When 𝜇 = 0, we obtain the objective function in Bertsimas and Dunn [10] that

emphasizes prediction.

Empirically, when 𝜇 = 1, we have observed that the resulting prescriptive trees

lead to a high predictive error and an optimistic estimate of the prescriptive error

that is not supported in out of sample experiments. Allowing 𝜇 to vary ensures that

the tree predictions lead to a significant improvement of the out of sample predictive

and prescriptive error.

To illustrate this observation, Figure 6-1 shows the average prediction and pre-

scription errors as a function of 𝜇 for one of the synthetic experiments we conduct

in Section 6.2. We see that using 𝜇 = 1 leads to very high prediction errors, as the

prescriptions are learned without making sure the predicted outcomes are close to

reality. More interestingly, we see that the best prescription error is not achieved at

𝜇 = 1. Instead, varying 𝜇 leads to improved prescription error, and for this particular

example the lowest error is attained for 𝜇 in the range 0.5–0.8. This gives clear evi-

dence that our choice of objective function is crucial for delivering better prescriptive
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trees.

Training Prescriptive Trees

We apply the Optimal Trees framework to solve Problem (6.5) and find Optimal

Prescriptive Trees. The core of the algorithm remains as described in Sections 2.3

and 3.2 for parallel and hyperplane splits, respectively, and we set Problem (6.5) as

the loss function to be optimized in 2.25. When evaluating the loss at each step of

the coordinate descent, we calculate the estimates of the counterfactuals by finding

the mean outcome for each treatment in each leaf among the samples in that leaf

that received that treatment using Equation (6.4). We determine the best treatment

to assign at each leaf by summing up the outcomes (observed or counterfactual as

appropriate) of all samples for each treatment, and then selecting the treatment with

the lowest total outcome in the leaf. Finally, we calculate the two terms of the

objective using the means and best treatments in each leaf, and add these terms with

the appropriate weighting to calculate the total objective value.

In addition to the existing hyperparameters (𝑛min, 𝐷max, 𝛼) we introduce the

following new hyperparameters:

∙ 𝑛treatment: the minimum number of samples of a treatment 𝑡 we need at a leaf

before we are allowed to prescribe treatment 𝑡 for that leaf. This is to avoid

using counterfactual estimates that are derived from relatively few samples;

∙ 𝜇: the prescription factor that controls the tradeoff between prescription and

prediction errors in the objective function.

Optimal Prescriptive Trees with Linear Predictions

The approach detailed above trains prescriptive trees by using the mean treatment

outcomes in each leaf as the counterfactual estimates for the other samples in that

leaf. There is nothing special about our choice to use the mean outcome other than

ease of computation, and it seems intuitive that a better predictive model for the

counterfactual estimates could lead to a better final prescriptive tree. In this section,
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we propose using linear regression methods as the basis for counterfactual estimation

inside the OPT framework.

Traditionally, tree-based models have eschewed linear regression models in the

leaves due to the prohibitive cost of repeatedly fitting linear regression models dur-

ing the training process, and instead have preferred to use simpler methods such as

predicting the mean outcome in the leaf. However, as seen in Chapter 5, it is possi-

ble to train regression trees with linear regression models in each leaf by exploiting

fast updates and coordinate descent to minimize the computational cost of fitting

these models repeatedly. This provides a practical and tractable way of generating

interpretable regression trees with more sophisticated prediction functions in each

leaf.

We propose using this approach for fitting linear regression models from the Chap-

ter 5 for the estimation of counterfactuals in our prescriptive trees. To do this, in

each leaf we fit a linear regression model for each treatment, using only the samples

in that leaf that received the corresponding treatment. We will then use these linear

regression models to estimate the counterfactuals for each sample/treatment pair as

necessary, before proceeding to determine the best treatment overall in the leaf using

the same approach as before.

Concretely, in each leaf of the tree ℓ we fit an elastic net model for each treatment

𝑡 using the relevant points in the leaf, {𝑖 : x𝑖 ∈ 𝒳ℓ, 𝑧𝑖 = 𝑡}, to obtain regression

coefficients 𝛽𝑡
ℓ:

min
𝛽𝑡
ℓ

1

2 |{𝑖 : x𝑖 ∈ 𝒳ℓ, 𝑧𝑖 = 𝑡}|
∑︁

𝑖:x𝑖∈𝒳ℓ,𝑧𝑖=𝑡

(︁
𝑦𝑖 − (𝛽𝑡

ℓ)
𝑇
x𝑖

)︁2

+ 𝜆𝑃𝛼(𝛽
𝑡
ℓ), (6.6)

where

𝑃𝛼(𝛽) = (1− 𝛼)
1

2
‖𝛽‖22 + 𝛼‖𝛽‖1. (6.7)

We proceed to estimate the counterfactuals with the following equation:

𝑦𝑖(𝑡) = (𝛽𝑡
ℓ(𝑖))

𝑇
x𝑖, (6.8)
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where ℓ(𝑖) is the leaf containing sample 𝑖. The overall objective function is therefore

min
𝜏(.),𝛽

𝜇

[︃
𝑛∑︁

𝑖=1

(︂
𝑦𝑖I[𝜏(x𝑖) = 𝑧𝑖] +

∑︁
𝑡̸=𝑧𝑖

(𝛽𝑡
ℓ(𝑖))

𝑇
x𝑖I[𝜏(x𝑖) = 𝑡]

)︂]︃

+ (1− 𝜇)

[︃
𝑛∑︁

𝑖=1

(︁
𝑦𝑖 − (𝛽𝑡

ℓ(𝑖))
𝑇
x𝑖

)︁2

+ 𝜆

𝑚∑︁
𝑡=1

∑︁
ℓ

𝑃𝛼(𝛽
𝑡
ℓ)

]︃
,

(6.9)

where the regression models 𝛽 are found by solving the elastic net problems (6.6)

defined by the prescriptive tree. Note that we have included the elastic net penalty

in the prediction accuracy term, mirroring the structure of the elastic net problem

itself. This is so that our objective accounts for overfitting the 𝛽 coefficients in the

same way as standard regression. We solve this problem using the approach from 5.2,

modified to fit a regression model for each treatment in each leaf, rather than just a

single regression model per leaf.

There are two additional hyperparameters in this model over OPT, namely the

degree of regularization in the elastic net 𝜆 and the parameter 𝛼 controlling the trade-

off between ℓ1 and ℓ2 norms in (6.7). We have found that we obtain strong results

using only the ℓ1 norm, and so this is what we use in all experiments. We select the

regularization parameter 𝜆 through validation.

6.2 Experiments with Synthetic Datasets

In this section, we design simulations on synthetic datasets to evaluate and compare

the performance of our proposed methods with other approaches. Since the data set

is simulated, the counterfactuals are fully known, which enables us to compare with

the ground truth. In the remainder of this section, we present our motivation behind

these experiments, describe the data generating process and the methods we compare,

followed by computational results and conclusions.
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Motivation

The general motivation of these experiments is to investigate the performance of

the OPT method for various choices of synthetic data. Specifically, as part of these

experiments, we seek to answer the following questions.

1. How well does each method prescribe, i.e., compute the decision boundary {x ∈

R𝑑 : 𝑦0(x) = 𝑦1(x)}?

2. How accurate are the predicted outcomes?

Experimental Setup

Our experimental setup is motivated by that shown in Powers et al. [101]. We generate

𝑛 data points x𝑖, 𝑖 = 1, . . . , 𝑛 where each x𝑖 ∈ R𝑑. Each x𝑖 is generated i.i.d. such

that the odd numbered coordinates 𝑗 are sampled from 𝑥𝑖𝑗 ∼ Normal(0, 1), while the

even numbered coordinates 𝑗 are sampled from 𝑥𝑖𝑗 ∼ Bernouilli(0.5).

Next, we simulate the observed outcomes under each treatment. We restrict the

scope of these simulations to two treatments (0 and 1) so that we can include in our

comparison methods those that only support two treatments. For each experiment,

we define a baseline function that gives the base outcome for each observation and an

effect function that models the effect of the treatment being applied. Both of these

are functions of the covariates x, centered and scaled to have zero mean and unit

variance. The outcome 𝑦𝑡 under each treatment 𝑡 as a function of x is given by

𝑦0(𝑥) = baseline(x)− 1

2
effect(x),

𝑦1(𝑥) = baseline(x) +
1

2
effect(x).

Finally, we assign treatments to each observation. In order to simulate an ob-

servational study, we assign treatments based on the outcomes for each treatment

so that treatment 1 is typically assigned to observations with a large outcome un-

der treatment 0, which are likely to realize a greater benefit from this prescription.

Concretely, we assign treatment 1 with the following probability:
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P(𝑍 = 1|X = x) =
𝑒𝑦0(x)

1 + 𝑒𝑦0(x)
.

In the training set, we add noise 𝜖𝑖 ∼ Normal(0, 𝜎2) to the outcomes 𝑦𝑖 corre-

sponding to the selected treatment.

We consider three different experiments with different forms for the baseline and

effect functions and differing levels of noise:

1. The first experiment has low noise, 𝜎 = 0.1, a linear baseline function, and a

piecewise constant effect function:

baseline(x) = 𝑥1 + 𝑥3 + 𝑥5 + 𝑥7 + 𝑥8 + 𝑥9 − 2,

effect(x) = 51(𝑥1 > 1)− 5.

2. The second experiment has moderate noise, 𝜎 = 0.2, a constant baseline func-

tion, and a piecewise linear effect function:

baseline(x) = 0,

effect(x) = 41(𝑥1 > 1)1(𝑥3 > 0) + 41(𝑥5 > 1)1(𝑥7 > 0) + 2𝑥8𝑥9.

3. The third experiment has high noise, 𝜎 = 0.5, a piecewise constant baseline

function, and a quadratic effect function:

baseline(x) = 51(𝑥1 > 1)− 5,

effect(x) =
1

2
(𝑥2

1 + 𝑥2 + 𝑥2
3 + 𝑥4 + 𝑥2

5 + 𝑥6 + 𝑥2
7 + 𝑥8 + 𝑥2

9 − 11).

For each experiment, we generate training data with 𝑛 = 1, 000 and 𝑑 = 20 as

described above. We also generate a test set with 𝑛 = 60, 000 using the same process,

without adding noise. In the test set, we know the true outcome for each observation

under each treatment, so we can identify the correct prescription for each observation.

For each method, we train a model using the training set, and then use the model
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to make prescriptions on the test set. We consider the following metrics for evaluating

the quality of prescriptions:

∙ Treatment Accuracy : the proportion of the test set where the prescriptions are

correct;

∙ Effect Accuracy : the 𝑅2 of the predicted effects, 𝑦(1)−𝑦(0), made by the model

for each observation in the test set, compared against the true effect for each

observation.

We run 100 simulations for each experiment and report the average values of

treatment and effect accuracy on the test set.

Methods

We compare the following methods:

∙ Prescription Trees: We include four prescriptive tree approaches:

– Personalization trees, denoted PT (recall that these are the same as OPT

with 𝜇 = 1 but trained with a greedy approach);

– OPT with 𝜇 = 1 and 𝜇 = 0.5, denoted OPT(1) and OPT(0.5), respectively;

– OPT with 𝜇 = 0.5 and with linear counterfactual estimation in each leaf,

denoted OPT(0.5)-L.

∙ Regress-and-compare: We include three regress-and-compare approaches

where the underlying regression uses either Optimal Regression Trees (ORT),

LASSO regression or random forests, denoted RC–ORT, RC–LASSO and RC–

RF, respectively. For each sample in the test set, we prescribe the treatment

that leads to the lowest predicted outcome.

∙ Causal Methods: We include the method of causal forests [118] with the

default parameters. While causal forests are intended to estimate the individual

treatment effect, we use the sign of the estimated individual treatment effect to
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Figure 6-2: Performance results for Experiment 1.
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determine the choice of treatment. Specifically, we prescribe 1 if the estimated

treatment effect for that sample is negative, and 0, otherwise.

We also tested causal MARS on all examples, but it performed similarly to

causal forests, and hence was omitted from the results for brevity.

Notice that causal forests and OPTs are joint learning methods—the training data for

these approaches is the whole sample that includes both the treatment and control

groups, as opposed to regress-and-compare methods which split the data and develop

separate models for observations with 𝑧 = 0 and 𝑧 = 1.

Results

Figure 6-2 shows the results for Experiment 1. In this experiment, the boundary

function is piecewise constant and the individual outcome functions are both piece-

wise linear. The true decision boundary is 𝑥1 = 1, and the regions {𝑥1 > 1} and

{𝑥1 ≤ 1} each have constant treatment effect. The true response function in each

of these regions is linear. OPT(0.5)-L outperforms all the three regress-and-compare

approaches and causal forests (CF) both in treatment and effect accuracy. There is

a significant improvement from OPT(0.5) to OPT(0.5)-L with the addition of linear

regression in the leaves, which is unsurprising as this models exactly the truth in

the data. The poorest performing method is the greedy PT, which has both low

treatment accuracy, and very poor effect accuracy (note that the out of sample 𝑅2
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Figure 6-3: Tree constructed by OPT(0.5)-L for an instance of Experiment 1.
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Figure 6-4: Performance results for Experiment 2.
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can be negative). OPT(1) improves slightly in the treatment accuracy, but the effect

accuracy is still poor. OPT(0.5) shows a large improvement in both the treatment

and effect accuracies over PT and OPT(1), which demonstrates the importance of

considering both the prescriptive and predictive components with the prescriptive

factor 𝜇 in the objective function.

Figure 6-3 shows the tree for one of the instances of Experiment 1 under OPT(0.5)-

L. Recall, the boundary function for this experiment was simply 𝑥1 = 1, which is

correctly identified by the tree. This particular tree has a treatment accuracy of

0.99, reflecting the accuracy of the boundary function, and an effect accuracy of 0.90,

showing that the linear regressions within each leaf provide high quality estimates of

the outcomes for both treatments.

The results for Experiment 2 are shown in Figure 6-4. This experiment has a

piecewise linear boundary with piecewise linear individual outcome functions, with

moderate noise. OPT(0.5)-L is again the strongest performing method in both treat-

ment and effect accuracies, followed by OPT(0.5) and Causal Forests. All prescriptive

tree methods have good treatment accuracy, showing that these tree models are able
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to effectively learn the indicator terms in the outcome functions of both arms. We

again see that OPT(0.5) and OPT(0.5)-L improve upon the other tree methods, par-

ticularly in effect accuracy, as a consequence of incorporating the predictive term in

the objective. The linear trends in the outcome functions of this experiment are not

as strong as in Experiment 1, and so the improvement of OPT(0.5)-L over OPT(0.5)

is not as large as before.

We observe that the joint learning methods perform better than the regress-and-

compare methods in this example even though the outcome functions for both the

treatment options do not have a common component (the baseline function is 0). We

believe this is because both the methods included here, causal forests and prescriptive

trees, can learn local effects effectively. Note that the structure of the boundary

function is such that the function is either constant or linear in different buckets.

We plot the tree from OPT(0.5)-L for an instance of this experiment in Figure 6-5.

This particular tree has a treatment accuracy of 0.925, which indicates that it has

learned the decision boundary effectively, along with an effect accuracy of 0.82. We

make the following observations from this tree.

1. Recall that the true boundary function for this experiment only includes the

variables from 𝑥1, 𝑥3, 𝑥5, 𝑥7, 𝑥8, and 𝑥9, and none of the remaining variables from

𝑥2 to 𝑥20. We see that this tree does not include any of these variables as well,

i.e., it has a zero false positive rate.

2. By inspecting the splits on the variables 𝑥1, 𝑥3, 𝑥5 and 𝑥7, we note that the tree

has learned thresholds of close to 0 for 𝑥3 and 𝑥7, and 1 for 𝑥1 and 𝑥5, which

matches with the ground truth for these variables.

3. Examining the tree more closely, we see that the prescriptions reflect the reality

of which outcome is best. For example, when 𝑥1 ≥ 0.9971 and 𝑥3 ≥ −0.0123,

the tree prescribes 0. This corresponds to the ground truth of the 41(𝑥1 >

1)1(𝑥3 > 0) term becoming active, which makes it likely that treatment 1

leads to larger (worse) outcomes. We also see that the linear component in the

outcome functions is reflected in the tree, as the tree assigns treatment 0 when

187



Figure 6-5: Tree constructed by OPT(0.5)-L for an instance of Experiment 2.
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Figure 6-6: Performance results for Experiment 3.
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𝑥9 is larger, which corresponds to the linear term in the outcome function being

large.

4. Finally, we note that the tree has a split where both the terminal leaves prescribe

the same treatment, which can initially seem odd. However, recall that the

objective term contains both prescription and prediction errors, and a split like

this can improve the prediction term in the objective, and hence the overall

objective value, even though none of the prescriptions are changed.

Finally, Figure 6-6 show the results from Experiment 3. This experiment has high

noise and a nonlinear quadratic boundary. Overall, regress-and-compare random for-

est and causal forest are the best-performing methods, followed closely by OPT(0.5)-

L, demonstrating that all three methods are capable of learning complicated nonlinear

relationships, both in the outcome functions and in the decision boundary. The treat-

ment accuracy is comparable for all prescriptive tree methods, but PT and OPT(1)

have very poor effect accuracy. This again demonstrates the importance of controlling

for the prediction error in the objective.

In this experiment, we see that regress-and-compare random forests performs com-

parably to causal forests, which was not the case for the other two experiments. We

believe that this is because the baseline function is relatively simple compared to the

effect function, which leads to the absence of strong common trends within the two

treatment outcome functions. This could make it more difficult to effectively learn

from both groups jointly, mitigating the benefits of combining the groups in training.
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Consequently, in this setting regress-and-compare methods could have performance

closer to joint learning methods.

Summary of Synthetic Experiments

In terms of both prescriptive and predictive performance, we provide evidence that our

method performs comparably with, or even outperforms the state-of-the-art methods,

as evidenced by both treatment and effect accuracy metrics. Additionally, the main

advantage of prescriptive trees is that they provide an explicit representation of the

decision boundary, as opposed to the other methods where the boundary is only

implied by the learned outcome functions. This lends credence to our claim that

the trees are interpretable. In fact, from our discussion of the trees obtained for

Combinations 1 and 2 in Figures 6-3 and 6-5, the trees correctly learn the true decision

boundary in the data.

We also found that regress-and-compare methods that fit separate functions for

each treatment are generally outperformed by joint learning methods that learn from

the entire dataset. We note that if there were an infinite amount of data and the

regress-and-compare methods could learn the individual outcome functions perfectly,

then they would also learn the decision boundary perfectly. However, for practical

problems with finite sample sizes, we have strong evidence that the performance can

be significantly worse than the joint learning methods.

6.3 Experiments with Real-World Datasets

In this section, we apply prescriptive trees to some real world problems to evaluate

the performance of our method in a practical setting. The first two problems, person-

alized warfarin dosing and personalized diabetes management, belong to the area of

personalized medicine. Next, we provide personalized job training recommendations

to individuals, and finally conclude with an example where we estimate the person-

alized treatment effect of high quality child care specialist home visits on the future

cognitive test scores of infants.
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Personalized Warfarin Dosing

In this section, we test our algorithm in the context of personalized warfarin dosing.

Warfarin is the most widely used oral anticoagulant agent worldwide. Its appropri-

ate dose can vary by a factor of ten among patients and hence can be difficult to

establish, with incorrect doses contributing to severe adverse effects [36]. Physicians

who prescribe warfarin to their patients must constantly balance the risks of bleeding

and clotting. The current guideline is to start the patient at 5 mg per day, and then

vary the dosage based on how the patient reacts until a stable therapeutic dose is

reached [69].

The publicly available dataset we use was collected and curated by staff at the

Pharmacogenetics and Pharmacogenomics Knowledge Base (PharmKGB) and mem-

bers of the International Warfarin Pharmacogenetics Consortium. One advantage of

this dataset is that it gives us access to counterfactuals—it contains the true sta-

ble dose for each patient found by physician controlled experimentation for 5, 528

patients. The patient covariates include demographic information (sex, race, age,

weight, height), diagnostic information (reason for treatment, e.g., deep vein throm-

bosis etc.), pre-existing diagnoses (indicators for diabetes, congestive heart failure,

smoker status etc.), current medications (Tylenol etc.), and genetic information (pres-

ence of genotype polymorphisms of CYP2C9 and VKORC1). The correct dose of

warfarin was split into three dose groups: low (≤ 3 mg/day), medium (> 3 and < 5

mg/day), and high(≥ 5 mg/day), which we consider as our three possible treatments

0, 1, and 2.

Our goal is to learn a policy that prescribes the correct dose of warfarin for each

patient in the test set. In this dataset, we know the correct dose for each patient, and

so we consider the following two approaches for learning the personalization policy.

Personalization when counterfactuals are known

Since we know the correct treatment 𝑧*𝑖 for each patient, we can simply develop a

prediction model that predicts the optimal treatment 𝑧 given covariates x. This is a
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standard multi-class classification problem, and so we can use off-the-shelf algorithms

for this problem. Solving this classification problem gives us a bound on the perfor-

mance of our prescriptive algorithms, as this is the best we could do if we had perfect

information.

Personalization when counterfactuals are unknown

Since it is unlikely that a real world dataset will consist of these optimal prescrip-

tions, we reassign some patients in the training set to other treatments so that their

assignment is no longer optimal. To achieve this, we follow the setup of Kallus [70],

and assume that the doctor prescribes warfarin dosage according to the following

probabilistic assignment model:

P(𝑍 = 𝑡|X = x) =
1

𝑆
exp

(︂
(𝑡− 1)(𝐵𝑀𝐼 − 𝜇)

𝜎

)︂
, (6.10)

where 𝜇, 𝜎 are the population mean and standard deviation of patients’ BMI respec-

tively, and the normalizing factor

𝑆 =
3∑︁

𝑡=1

exp

(︂
(𝑡− 1)(𝐵𝑀𝐼 − 𝜇)

𝜎

)︂
.

We use this probabilistic model to assign each patient 𝑖 in the training set a new

treatment 𝑧𝑖, and then set 𝑦𝑖 = 0 if 𝑧𝑖 = 𝑧𝑖, and 𝑦𝑖 = 1, otherwise. We proceed to

train our methods using the training data (𝑥𝑖, 𝑦𝑖, 𝑧𝑖), 𝑖 = 1, . . . , 𝑛. This allows us to

evaluate the performance of various prescriptive methods on data which is closer to

real world observational data.

Experiments

In order to test the efficacy with which our algorithm learns from observational data,

we split the data into training and test sets, where we vary the size of the training

set as ℎ = 500, 600, . . . , 2500, and the size of the test set is fixed as 𝑛𝑡𝑒𝑠𝑡 = 2500.

We perform 100 replications of this experiment for each 𝑛, where we re-sample the
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Figure 6-7: Misclassification rate for warfarin dosing prescriptions as a function of
training set size.
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training and test sets of respective sizes without replacement each time. We report

the misclassification (error) rate on the test set, noting that the full counterfactuals

are available on the test set.

We compare the methods described in Section 6.2, but do not include OPT(0.5)-L

as we did not observe any benefit when adding continuous estimates of the counter-

factuals, possibly due to the discrete nature of the outcomes in the problem. We also

do not include causal forests as the problem has more than two treatments. Addition-

ally, to evaluate the performance of prescriptions when all outcomes are known, we

treat the problem as a multi-class classification problem and solve using off-the-shelf

algorithms. We use random forests [29], denoted Class–RF, and logistic regression,

denoted Class–LR.

In Figure 6-7, we present the out-of-sample misclassification rates for each ap-

proach. We see that, as expected, the classification methods perform the best with

random forests having the lowest overall error rate, reaching around 32% at 𝑛 = 2, 500.

This provides a concrete lower bound for the performance of the prescriptive ap-

proaches to be benchmarked against.

The greedy PT approach has stronger performance than the OPT methods at low

𝑛, but as 𝑛 increases this advantage disappears. At 𝑛 = 2, 500, OPT(1) algorithm

outperforms PT by about 0.6%, which shows the improvement that is gained by

193



solving the prescriptive tree problem holistically rather than in a greedy fashion.

OPT(0.5) improves further upon this by 0.6%, demonstrating the value achieved by

accounting for the prediction error in addition to the prescriptive error. The trees

generated by OPT(1) and OPT(0.5) were also smaller than those from PT, making

them more easily interpretable.

Finally, the regress-and-compare approaches both perform similarly, outperform-

ing all prescriptive tree methods. We note that this is the opposite result to that found

by [70], where the prescriptive trees were the strongest. We suspect the discrepancy

is because they did not include random forests or LASSO as regress-and-compare

approaches, only CART, 𝑘-NN, logistic regression and OLS regression which are all

typically weaker methods for regression, and so the regressions inside the regress-

and-compare were not as powerful, leading to diminished regress-and-compare per-

formance. It is perhaps not surprising that the regress-and-compare approaches are

more powerful in this example; they are able to choose the best treatment for each pa-

tient based on which treatment has the best prediction, whereas the prescription tree

can only make prescriptions for each leaf, based on which treatment works well across

all patients in the leaf. This added flexibility leads to more refined prescriptions, but

at a complete loss of interpretability which is a crucial aspect of the prescription tree.

Overall, our results show that there is a significant advantage to both solving the

prescriptive tree problem with a view to global optimality, and accounting for the

prediction error as well as the prescription error while optimizing the tree.

Personalized Diabetes Management

In this section, we apply our algorithms to personalized diabetes management us-

ing patient level data from Boston Medical Center (BMC). This dataset consists of

electronic medical records for more than 1.1 million patients from 1999 to 2014. We

consider more than 100,000 patient visits for patients with type 2 diabetes during

this period. Patient features include demographic information (sex, race, gender

etc.), treatment history, and diabetes progression. This dataset was first consid-

ered in Bertsimas et al. [19], where the authors propose a 𝑘-nearest neighbors (𝑘NN)
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regress-and-compare approach to provide personalized treatment recommendations

for each patient from the 13 possible treatment regimens. We compare our prescrip-

tive trees method to several regress-and-compare based approaches, including the

previously proposed 𝑘NN approach.

We follow the same experimental design as in Bertsimas et al. [19]. The data is

split 50/50 into training and testing. The models are constructed using the training

data and then used to make prescriptions on the testing data. The quality of the

predictions on the testing data is evaluated using a 𝑘NN approach to impute the

counterfactuals on the test set—we also considered imputing the counterfactuals using

LASSO and random forests and found the results were not sensitive to the imputation

method. We use the same three metrics to evaluate the various methods: the mean

HbA1c improvement relative to the standard of care; the percentage of visits for which

the algorithm’s recommendations differed from the observed standard of care; and the

mean HbA1c benefit relative to standard of care for patients where the algorithm’s

recommendation differed from the observed care.

We varied the number of training samples from 1,000–50,000 (with the test set

fixed) to examine the effect of the amount of training data on out-of-sample perfor-

mance. We repeated this process for ten different splittings of the data into training

and testing to minimize the effect of any individual split on our results.

In addition to methods defined in Section 6.2, we compare the following ap-

proaches:

∙ Baseline: The baseline method continues the current line of care for each

patient.

∙ Oracle: For comparison purposes, we include an oracle method that selects the

best outcome for each patient using the imputed counterfactuals on the test set.

This method therefore represents the best possible performance on the data.

∙ Regress-and-compare: In addition to RC–LASSO, RC–RF, we include 𝑘-

nearest neighbors regress-and-compare, denoted RC–𝑘NN, to match the ap-

proaches used in [19]
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Figure 6-8: Comparison of methods for personalized diabetes management. The
leftmost plot shows the overall mean change in HbA1c across all patients (lower is
better). The center plot shows the mean change in HbA1c across only those patients
whose prescription differed from the standard-of-care. The rightmost plot shows the
proportion of patients whose prescription was changed from the standard-of-care.
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The results of the experiments are shown in Figure 6-8. We see that our results for

the regress-and-compare methods mirror those of [19]; RC–𝑘NN is the best performing

regression method for prescriptions, and the performance increases with more training

data. RC–LASSO increases in performance with more data as well, but performs

uniformly significantly worse than 𝑘NN. RC–RF performs strongly with limited data,

but does not improve as more training data becomes available. OPT(0.5) offers the

best performance across all training set sizes. Compared to RC–𝑘NN, OPT(0.5) is

significantly stronger at smaller training set sizes, supporting our intuition that it

makes better use of the data by considering all treatments simultaneously rather

than partitioning based on treatment. At higher training set sizes, the performance

behaviors of RC–𝑘NN and OPT(0.5) become similar, suggesting that the methods

may be approaching the performance limits of the dataset.

These computational experiments offer strong evidence that the prescriptions of

OPT are at least as strong as those from RC–𝑘NN, and significantly stronger at

smaller training set sizes. The other critical advantage is the increased interpretabil-
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ity of OPT compared to RC–𝑘NN, which is itself already more interpretable than

other regress-and-compare approaches. To interpret the RC–𝑘NN prescription for a

patient, one must first find the set of nearest neighbors to this point among each of

the possible treatments. Then, in each group of nearest neighbors, we must identify

the set of common characteristics that determine the efficacy of the corresponding

treatment on this group of similar patients. When interpreting the OPT prescrip-

tion, the tree structure already describes the decision mechanism for the treatment

recommendation, and is easily visualizable and readily interpretable.

Personalized Job training

In this section, we apply our methodology on the Jobs dataset [74], a widely-used

benchmark dataset in the causal inference literature, where the treatment is job

training and the outcomes are the annual earnings after the training program. This

dataset is obtained from a study based on the National Supported Work program1.

This study consists of 297 and 425 individuals in the control and treated groups re-

spectively, where the treatment indicator 𝑧𝑖 is 1, if the subject received job training in

1976–77 or 0, otherwise. The dataset has seven covariates which include age, educa-

tion, race, marital status, if the individual earned a degree or not, and prior earnings

(earnings in 1975) and the outcome 𝑦𝑖 is 1978 annual earnings.

We split the full dataset into 70/30 training/testing samples, and averaged the

results over 1000 such splits to plot the out of sample average personalized income.

Since the counterfactuals are not known for this example we again employ the nearest-

neighbor matching algorithm from [19] to impute the counterfactual values on the test

set. Using these imputed values, we compute the cost of policies prescribed by each

method. Note that for this example, the higher the out of sample income, the better.

We include causal forests in our comparison for this problem as it only has two

treatment options.

In Table 6.1, we present the average net personalized income on the test set,

as prescribed by each of the five methods. For each method, we only prescribe a
1Available at http://users.nber.org/~rdehejia/nswdata2.html
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Table 6.1: Average personalized income on the test set for various methods, arranged
in increasing order.

Method Average income ($) Standard error ($)

Baseline 5436.58 10.81
CF 5880.70 17.92
RC–𝑘NN 5884.28 17.79
RC–RF 5892.43 17.78
RC–LASSO 5941.39 18.94
OPT(0.5)-L 5979.84 18.07
Oracle 7697.23 17.16

Figure 6-9: Out-of-sample average personalized income as a function of inclusion rate.

5100

5400

5700

0.00 0.25 0.50 0.75 1.00
Inclusion rate

M
ea

n 
ou

t−
of

−
sa

m
pl

e 
in

co
m

e

OPT(0.5)−L
RC−kNN
RC−RF
RC−LASSO
CF

treatment for an individual in the test set if the predicted treatment effect for that

individual is higher than a certain value 𝛿 > 0, whose value we vary and choose such

that it leads to the highest possible predicted average test set income. We find the

best such 𝛿 for each instance, and average the best prescription income over 1000

realizations for each method. From the results, we see that OPT(0.5)-L obtains an

average personalized income of $5980, which is higher than the other methods. The

next closest method is RC–LASSO, which obtains an average income of $5941.

In Figure 6-9, we present the out-of-sample incomes as a function of the fraction of

subjects for which the intervention is prescribed (the inclusion rate), which we obtain

by varying the threshold 𝛿 described above. We see that the average income in the

test set is highest for OPT(0.5)-L at all values of the inclusion rate, indicating that
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our OPT method is best able to estimate the personalized treatment effect across all

subjects. We also see that the income peaks at a relatively low inclusion rate, showing

that we are able to easily identify a subset of the subjects with large treatment effect.

Estimating Personalized Treatment Effects for Infant Health

In this section, we apply our method for estimating the personalized treatment effect

of high quality child care specialist home visits on the future cognitive test scores of

children. This dataset is based on the Infant Health Development Program (IHDP)

and was compiled by Hill [61]. Following Hill [61], the original randomized control trial

was made imbalanced by removing a biased subset of the group that had specialist

home visits. The final dataset consists of 139 and 608 subjects in the treatment

and control groups respectively, with 𝑧𝑖 = 1 indicating treatment (specialist home

visit), and a total of 25 covariates which include child measurements such as child-

birth weight, head circumference, weeks born pre-term, sex etc., along with behaviors

engaged during the pregnancy—cigarette smoking, alcohol and drug consumption

etc., and measurements on the mother at the time she gave birth—age, marital status,

educational attainment etc.

In this example we focus on estimating the individual treatment effect, since it

has been acknowledged that the program has been successful in raising test scores

of treated children compared to the control group (see references in Hill [61]). The

outcomes are simulated in such a way that the average treatment effect on the control

subjects is positive (setting B in Hill [61] with no overlap). However, note that even

though the sign and magnitude of the average treatment effect is known, there is

still heterogeneity in the magnitudes of the individual treatment effects. In all our

experiments, we split the data into training/test as 90/10, and compute the error of

the treatment effect estimates on the test set compared to the true noiseless outcomes

(known). We average this value over 100 splits of the dataset, and compare the test

set performance for each method.

In Table 6.2, we present the means and standard errors of the 𝑅2 of the personal-

ized treatment effect estimates on the test set, given by each of the four methods. We
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Table 6.2: Average 𝑅2 on the test set for each method when estimating the personal-
ized treatment effect.

Method Mean 𝑅2 Standard error

CF 0.543 0.015
RC–LASSO 0.639 0.018
RC–RF 0.704 0.013
OPT(0.5)-L 0.759 0.013

see that OPT(0.5)-L obtains the highest average 𝑅2 value of 0.759, followed by RC-

Random forests with 0.704. This again gives strong evidence that our OPT methods

can deliver high-quality prescriptions whilst simultaneously maintaining interpretabil-

ity.

6.4 Conclusions

In this chapter, we presented an interpretable approach for personalizing treatments

that learns from observational data. Our method relies on iterative splitting of the

feature space, and can handle the case of more than two treatment options. We

applied this method to synthetic and real world datasets, and illustrate its superior

prescriptive power compared to other state of the art methods.
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Chapter 7

Diagnostics for Children After Head

Trauma

Between 2006 and 2010, an estimated 750,000 emergency department visits pertained

to pediatric head trauma [85, 86]. Most children with head injury have apparently

minor trauma [86, 44]. In children with minor head trauma, the main challenge is to

identify clinically important intracranial injuries that necessitate immediate interven-

tion or close observation. Currently, computed tomography (CT) is the standard for

the rapid diagnosis of intracranial injury [47], but it is costly, may require sedation,

and exposes patients to ionizing radiation which may increase the risk of malignancies

later in life [32, 31, 87]. However, patients without substantially altered mental status,

e.g., with Glasgow Coma Scale (GCS) scores of 14 or 15, rarely suffer from clinically

important traumatic brain injury (TBI) or have evidence of intracranial injury with

CT imaging [73]. Avoiding needless CTs in such patients is highly desirable [73]. To

this end, the Pediatric Emergency Care Applied Research Network (PECARN) has

developed and validated rules for triaging which children with head trauma but with-

out substantially altered mental status should receive head CT to diagnose clinically

important TBI [73]. The PECARN prediction tools are widely used [122, 108] and

have been independently validated multiple times [84, 66].

The PECARN tools are easy to memorize and apply, but their simplicity may come

at a price in terms of maximum attainable predictive performance. Having easy-to-
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memorize predictive tools is desirable but hardly necessary, given the high degree of

penetration of health information technologies and the wide use of clinical decision

support tools in emergency departments in developed countries. In this chapter, we

use the methods from Chapter 2 to develop and validate tools to predict clinically

important TBI (ciTBI) that are easy to implement, and provide a performance edge

on the PECARN tools [73]. The intention is to provide an example of how the

improved performance of OCT can lead to materially significant impact in practice.

7.1 Data and Methods

Patients

We analyzed a prospective cohort of 42, 412 children with head trauma who were

examined between June 2004 and September 2006 in emergency medicine departments

participating in PECARN [73]. The mean age was 7.1 years, ranging from 0 to

18. 6263 (15%) children suffered injuries with severe mechanisms, 37, 961 (90%) had

isolated head trauma, and 41, 071 (97%) had GCS score of 15.

This cohort was designed to develop and validate a classifier (predictive tool) to

identify children at very low risk of ciTBI. Eligible patients presented to the emer-

gency departments within 24 hours of a head injury. Patients who were imaged before

admission, had trivial injury mechanisms, or conditions complicating assessment (e.g.,

known brain tumors) were excluded. Patients with GCS scores of 13 or less, ventricu-

lar shunts, or bleeding disorders were excluded. Further details about the cohort are

in [73].

We followed the original analysis and stratified the cohort into 10, 718 (25%)

“younger” (younger than 2 years and predominantly nonverbal) and 31, 694 (75%)

“older” (older than 2 years and predominantly verbal) patient strata. The rationale

was that the injury mechanisms and the patients’ sensitivity to radiation and (their

guardians’) risk tolerance towards radiation-related side effects would likely differ in

the two groups [73]. We randomly split patients into classifier training (𝑛 = 8574
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and 𝑛 = 25, 355, respectively, in the younger and older strata) and test (𝑛 = 2144

and 𝑛 = 6339, respectively, in the two strata) cohorts. Because the dataset was

anonymized, we could not use the same training and test cohorts as in the original

analysis [73].

Clinical outcome

The outcome of interest was ciTBI, defined a priori as death from TBI, neurosurgery,

intubation for more than 24 hours, or hospital admission for at least 2 nights in

patients with TBI-related CT findings. For detailed clinical definitions see [73].

Classifier training and test

Predictors

All predictors in the PECARN dataset were prospectively recorded. Predictors in-

cluded attributes of the injury mechanism and symptoms and signs assessed at pre-

sentation (see Table 7.1). Predictors that were defined conditional on levels of other

predictors were entered in the analyses as interaction effects. For example, the dura-

tion of a seizure is defined only among patients with a history of post-injury seizures,

and is coded as 0 for patients with no history of seizures.

Classifiers

CART was used to derive the original PECARN rules. We developed optimal clas-

sification trees (OCT) using the methods of Chapter 2 to classify patients as having

ciTBI or not. OCT was tuned to be as likely to miss a ciTBI case as the original

PECARN tools are.

Test

For each classifier, we estimated the sensitivity, specificity, positive and negative pre-

dictive values (𝑃𝑃𝑉 and 𝑁𝑃𝑉 , respectively), and positive and negative likelihood

ratios (𝐿𝑅+ and 𝐿𝑅−, respectively) in the test cohorts. For each metric, we also
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Table 7.1: Prospectively collected predictors in the PECARN cohort. Listed in brack-
ets is the coding of the predictor: p𝑥, polytomous with 𝑥 levels; o𝑥, ordinal with 𝑥
levels; c, continuous. Predictors defined conditional on the presence of other predic-
tors are indented.

History Physical Other

age [c] GCS 15 [p2] intubated [p2]
headache [p2] altered mental status [p2] sedated [p2]

initiation [p4] agitated [p2] pharmacologically
severity [o4] sleepy [p2] paralyzed [p2]

amnesia [p3] slow reacting [p2] injury mechanism (p13)
loss of conscience [p3] repetitive questions [p2] injury severity (o3)

duration [o4] other [p2]
seizures [p2] palpable skull fracture [p3]

initiation [p4] depressed [p2]
duration [o4] basilar fracture signs [p2]
acting normal [p2] hemotympanum [p2]

vomiting [p2] CSF otorrhea [p2]
episodes [o4] CSF rhinorrhea [p2]
first vomit [p4] raccoon eyes [p2]
last vomit[p4] Battle’s sign [p2]

dizziness [p2] scalp hematoma [p2]
size [o3]
location [p3]

supraclavicular trauma [p2]
face [p2]
neck [p2]
frontal scalp [p2]
occipital scalp [p2]
parietal scalp [p2]
temporal scalp [p2]

neurological deficit [p2]
motor [p2]
sensory [p2]
pupil reactivity [p2]
reflexes [p2]
other [p2]

other substantial injury [p2]
extremities [p2]
lacerations [p2]
cervical spine [p2]
torso [p2]
intraabdominal [p2]
pelvis [p2]
other [p2]

intoxication [p2]
bulging anterior fontanelle [p2]
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compared estimates from OCT and from the original PECARN tools, by estimat-

ing odds ratios of probability metrics and ratios of likelihood ratio metrics. Unless

otherwise noted, all confidence intervals (CI) are two-sided exact 95% CIs.

Handling of missing data

All 42, 412 patients had outcome data. For each predictor in Table 7.1, we examined

whether missing a value was associated with the outcome using logistic regressions.

There was no evidence of strong associations between the outcome and missingness

in various predictors, suggesting that data are missing completely at random [80]. We

imputed missing values using a novel method developed in [20] that imputes the miss-

ing values to minimize the total distance of each datapoint to its 𝐾-nearest neighbors

(𝐾 = 10 through cross-validation). Such methods have demonstrated significant im-

provement in imputation accuracy compared to classical (approximate) methods such

as the expectation-maximization algorithm and predictive mean matching in many

real-world datasets [20].

Sensitivity analyses

We also examined whether results changed when only complete cases (children with

no missing values) were used. We also compared OCT against CART trees that we

developed in the training dataset using the same approach as in [73]. All results from

sensitivity analyses were congruent with those from the main analysis and are not

shown.

7.2 Results

With the PECARN tool (Figure 7-1), patients younger than 2 years are considered at

higher risk of ciTBI if they have signs of altered mental status, a palpable skull frac-

ture, an occipital or parietal scalp hematoma, are not acting normally (per guardian),

or suffered a severe mechanism of injury. Compared to the PECARN tool, the cor-
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Figure 7-1: PECARN rules for ciTBI in children younger than 2 years.

YesNo

Occipital,
parietal or
temporal

None or
frontal

≥5 sNone
or <5 s

SevereMild or
moderate

YesNo

NoYes

50/1210 ciTBI
 (4.13%)

Higher Risk

28/1444 ciTBI
 (1.98%)

Higher Risk

5/265 ciTBI
 (1.89%)

Higher Risk

8/1556 ciTBI
 (0.51%)

Higher Risk

5/103 ciTBI
 (4.85%)

Higher Risk

1/554 ciTBI
 (0.18%)

Higher Risk

1/5586 ciTBI
 (0.02%)

Lower Risk

2/6140 ciTBI
 (0.03%)

Acting normally per
parent?

7/6243 ciTBI
 (0.11%)

Palpable or unclear
skull fracture?

15/7799 ciTBI
 (0.19%)

Mechanism of injury

20/8064 ciTBI
 (0.25%)
Loss of

consciousness?

48/9508 ciTBI
 (0.50%)

Scalp haematoma?

98/10718 ciTBI
 (0.91%)

Altered mental status?

Collapsible Tree Example file:///Users/jack/Dropbox (MIT)/research/PECARN_re-analysis/graph/new/d3.html

1 of 1 19/04/17, 10:29 AM

responding OCT in Figure 7-2 identified more children as being at low risk of ciTBI.

For example, nonverbal children who have a parietal scalp hematoma are classified

as being at higher risk of ciTBI with the PECARN tool, but they would be classified

as having low risk of ciTBI by OCT if they also act normally and have no history of

vomiting.

Children who are at least 2 years old are considered at higher risk of TBI with the

PECARN tool if they exhibit signs of altered mental status or basilar skull fracture,

have a history of loss of consciousness or of vomiting, have severe headache, or suffered

a severe mechanism of injury (Figure 7-3). The corresponding OCT in Figure 7-4

identifies more children as being at lower risk, compared to the PECARN tool. For

example, a child with no signs of altered mental status who only has a history of

vomiting would be classified as having low risk of ciTBI if there is no supraclavicular

evidence of trauma (e.g., lacerations, bruises).

The counts of children predicted to be at higher versus low risk of ciTBI with
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Figure 7-2: OCT for ciTBI in children younger than 2 years.
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OCT and the PECARN tools versus the true ciTBI status are shown in Tables 7.2

and 7.3 for younger and older patient strata, respectively.

In the younger stratum, both tools classified every patient with ciTBI in the

same way: they identified all 17 patients with ciTBI in the validation cohort, and

the same 80 out of 81 patients in the training cohort. The single patient who was

mistakenly predicted to be at low risk of ciTBI by both tools was a newborn who was

hospitalized for at least 2 nights and had evidence of TBI in CT imaging. That child

suffered a moderate severity trauma and had no recorded suggestive signs (patient A

in Table 7.4). However, OCT outperformed the PECARN rule in correctly identifying

more children at low risk of ciTBI. As shown in Table 7.5, for all performance metrics,

the OCT was as good or better than the PECARN tool in both cohorts.

With reference to correctly ruling out the presence of ciTBI, compared to the

PECARN tool, the OCT had statistically significantly better specificity (by 21% [odds

ratio 2.44] and 25% [odds ratio 3.19] in the training and test cohorts, respectively),

at least as high negative predictive value, and a more favorable negative likelihood
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Figure 7-3: PECARN rules for ciTBI in children at least 2 years old.
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Figure 7-4: OCT for ciTBI in children at least 2 years old.
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ratio (28% and 32% smaller, respectively, albeit not statistically significantly so).

In the older stratum, in the training cohort, the PECARN tool missed 7 out of

244 patients with ciTBI, and the OCT missed 3 (Table 7.4). Two patients with ciTBI

were missed by both tools. One of them, a 6 year old child who fell down the stairs

and presented with a small frontal hematoma, received neurosurgery. The other, a 16

year old who suffered an assault and had signs of facial trauma, was hospitalized and

had TBI findings in CT imaging. The OCT (but not PECARN) misclassified a 11

year old patient who had a bike accident, and a history of brief loss of conscience, and

moderate headache. The PECARN tool (but not OCT) misclassified 5 patients aged

between 6 and 15 years, all with moderate severity injury mechanisms, and variable

suggestive symptoms and signs (Table 7.4). Both tools classified every patient with

ciTBI in the same way in the test set. They both missed a 26 month old preverbal

child who was hospitalized for at least 2 nights and had evidence of TBI in CT

imaging. This patient suffered a moderately severe injury falling from an elevation,

and had only a medium sized parietal or temporal hematoma.

As was the case in the younger children, in children at least 2 years old, the OCT

was as good or better than the PECARN tool in both cohorts for all performance

metrics. Compared to the PECARN rules, OCT had statistically significantly better

specificity (by 10% [odds ratio 1.54] and 3.6% [odds ratio 1.18] in the training and test

cohorts, respectively), at least as high negative predictive value, and a more favorable

negative likelihood ratio (54% and 5% smaller, respectively albeit not statistically

significantly so; Table 7.6).
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Table 7.2: Cross-classification of predictions of higher and low risk and ciTBI status
in children younger than 2 years.

Cohort ciTBI
status

OCT
high
risk

OCT
low risk PECARN

high risk
PECARN
low risk

Training Yes 80 1 80 1
No 2300 6193 4040 4453

Test Yes 17 0 17 0
No 459 1668 995 1132

Table 7.3: Cross-classification of predictions of higher and low risk and ciTBI status
in children 2 years and older.

Cohort ciTBI
status

OCT
high
risk

OCT
low risk PECARN

high risk
PECARN
low risk

Training Yes 241 3 237 7
No 9020 16091 11629 13482

Test Yes 33 1 33 1
No 1804 4501 2029 4276

Table 7.4: Patients with ciTBI who were missed by the PECARN or OCT rules.

ID Cohort Missed by Age (verbal status) Mechanism of injury (severity) GCS Recorded signs or symptoms ciTBI

A <2 y, dtraining OCT, PECARN rules Newborn (preverbal) Object fell on head (moderate) 15 [None] Hospitalization +
TBI in CT

B >=2 y, training OCT, PECARN rules 6 y (verbal) Fell down the stairs (moderate) 15 Small (<1 cm) frontal hematoma Neurosurgery

C >=2 y, training OCT, PECARN rules 16 y (verbal) Assault (moderate) 15 Facial trauma Hospitalization +
TBI in CT

D >=2 y, training PECARN rules 11 y (verbal) Bike collision or fall from bike
(moderate) 15

Large (>3 cm) frontal hematoma,
moderate headache within 1 h,
signs of injury in the flank and extremities

Hospitalization +
TBI in CT

E >=2 y, training PECARN rules 7 y (verbal) Wheeled transport crash other than
bike or motor vehicle (moderate) 15

Medium (1–3 cm) frontal hematoma,
dizziness, unclear palpation exam for
skull fracture, facial trauma,
neurological deficit (cranial nerve)

Hospitalization +
TBI in CT

F >=2 y, training PECARN rules 6 y (verbal) Wheeled transport crash other than
bike or motor vehicle (moderate) 15

Small (<1 cm) parietal or temporal
hematoma, moderate headache
within 1 h

Hospitalization +
TBI in CT

G >=2 y, training PECARN rules 15 y (verbal) Sports (moderate) 15
Large (>3 cm) frontal hematoma,
moderate headache within 1 h,
facial trauma

Hospitalization +
TBI in CT

H >=2 y, training PECARN rules 11 y (verbal) Sports (moderate) 15 Amnesia for the injury,
facial trauma

Hospitalization +
TBI in CT

I >=2 y, training OCT rules 11 y (verbal) Bike collision or fall from bike
(moderate) 15

Amnesia for the injury,
loss of consciousness for 1–5 mins,
moderate headache

Hospitalization +
TBI in CT

J >=2 y, test OCT, PECARN rules 26 mo (preverbal) Fell from an elevation (moderate) 15 Medium (1–3 cm) parietal or
temporal hematoma

Hospitalization +
TBI in CT
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Table 7.5: Predictive performance of OCT versus PECARN rules among children
younger than 2 years.

Metric OCT PECARN Odds Ratio

Training
Sensitivity 98.8 (93.3, 100.0) 98.8 (93.3, 100.0) 1.00 (0.31, 3.21)
Specificity 72.9 (72.0, 73.9) 52.4 (51.4, 53.5) 2.44 (2.35, 2.54)
PPV 3.4 (2.7, 4.2) 1.9 (1.5, 2.4) 1.76 (1.68, 1.84)
NPV 100.0 (99.9, 100.0) 100.0 (99.9, 100.0) 1.39 (0.45, 4.33)
LR+ 3.65 (3.50, 3.81) 2.08 (2.01, 2.15) 1.76 (1.68, 1.84)
LR- 0.02 (<0.005, 0.12) 0.02 (<0.005, 0.17) 0.72 (0.23, 2.24)

Test
Sensitivity 100.0 (80.5, 100.0) 100.0 (80.5, 100.0) 1.00 (0.15, 6.65)
Specificity 78.4 (76.6, 80.2) 53.2 (51.1, 55.4) 3.19 (2.91, 3.50)
PPV 3.6 (2.1, 5.7) 1.7 (1.0, 2.7) 2.16 (1.82, 2.57)
NPV 100.0 (99.8, 100.0) 100.0 (99.7, 100.0) 1.47 (0.25, 8.61)
LR+ 4.50 (4.02, 5.04) 2.08 (1.90, 2.27) 2.16 (1.82, 2.57)
LR- 0.04 (<0.005, 0.54) 0.05 (<0.005, 0.80) 0.68 (0.12, 4.00)

Table 7.6: Predictive performance of OCT versus PECARN rules among children at
least 2 years old.

Metric OCT PECARN Odds Ratio

Training
Sensitivity 98.8 (96.4, 99.7) 97.1 (94.2, 98.8) 1.86 (0.84, 5.14)
Specificity 64.1 (63.5, 64.7) 53.7 (53.1, 54.3) 1.54 (1.50, 1.58)
PPV 2.6 (2.3, 2.9) 2.0 (1.8, 2.3) 1.31 (1.28, 1.35)
NPV 100.0 (99.9, 100.0) 99.9 (99.9, 100.0) 2.19 (1.00, 5.93)
LR+ 2.75 (2.69, 2.81) 2.10 (2.04, 2.15) 1.31 (1.28, 1.35)
LR- 0.02 (0.01, 0.06) 0.05 (0.03, 0.11) 0.46 (0.17, 1.00)

Test
Sensitivity 97.1 (84.7, 99.9) 97.1 (84.7, 99.9) 1.00 (0.30, 3.38)
Specificity 71.4 (70.3, 72.5) 67.8 (66.7, 69.0) 1.18 (1.13, 1.24)
PPV 1.8 (1.2, 2.5) 1.6 (1.1, 2.2) 1.12 (1.03, 1.23)
NPV 100.0 (99.9, 100.0) 100.0 (99.9, 100.0) 1.05 (0.34, 3.31)
LR+ 3.39 (3.16, 3.64) 3.02 (2.82, 3.23) 1.12 (1.03, 1.23)
LR- 0.04 (0.01, 0.28) 0.04 (0.01, 0.30) 0.95 (0.30, 2.94)
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7.3 Discussion

TBI has been deemed a ‘serious public health concern’ by the Centers of Disease and

Prevention (CDC) [44]. In the United States, public awareness about the importance

and long term implications of head injury has increased over the last years, and

parents and guardians are more likely to bring children with head trauma to the

emergency department for evaluation [86]. In children who have very low risk of ciTBI,

avoiding superfluous CT imaging and the associated exposure to ionizing radiation

reduces costs and the risk of long term radiation-induced malignancies [31, 32, 87].

We developed algorithms that outperform the PECARN tool in correctly identi-

fying patients without ciTBI, while identifying the same patients with ciTBI among

children younger than 2 years, and more patients with ciTBI among children older

than 2 years. The improvements are more pronounced among children younger than

2 years, who are predominantly preverbal and thus more difficult to evaluate, may

be more likely to suffer clinically important injury even when the injury mechanism

is not severe, and for whom concerns about radiation exposure are greater com-

pared to older children. Using the OCT versus PECARN would correctly reclassify

21.2% (2276/10718) of children younger than 2 years and 8.9% (2830/31694) of older

children. These improvements are likely clinically important and economically con-

sequential.

The Children’s Head injury Algorithm for the prediction of Important Clinical

Events (CHALICE) [41] and the Canadian Assessment of Tomography for Childhood

Head Injury (CATCH) rule [95] are two other major clinical prediction rules. In a

prospective external validation study in 1009 children (75% of which were older than

2.6 years), the sensitivities of PECARN, CHALICE and CATCH were 100%, 84%, and

91%, respectively, and the specificities were 61%, 85%, and 44% [42]. If the odds ratios

from our head-to-head comparison between OCT and PECARN (Tables 7.5 and 7.6)

transfer to the validation study of Easter et al. [42], OCT would have sensitivity

around 100% and specificity between 65 and 74%.

A systematic review and decision analysis from the perspective of the National
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Health Service (NHS) in England and Wales suggests that using clinical prediction

rules outperforms other strategies, such as relying on isolated clinical symptoms or

signs, subjecting all or none to CT imaging [97, 100]. Although the PECARN tool was

the most sensitive of the examined clinical prediction rules, which included CHAL-

ICE [41], the Atabaki et al. tool [2], a University of California Davis tool [96], and

the National Emergency X-Radiography Utilization Study (NEXUS) II [88], the cost-

effectiveness analysis favored CHALICE and NEXUS-II over PECARN, because of

their highest specificity. Our OCT models were tuned to have at least as good sensi-

tivity as PECARN, and they attain substantially higher specificity than PECARN.

Thus the herein developed OCT rules would likely be more competitive to CHALICE

and NEXUS-II in the NHS’s cost-effectiveness evaluation [97, 100].

However, especially in the U.S., where there is no explicit health care budget,

considerations of cost-effectiveness are less directly applicable. Instead, because the

uncertainty about the role of CT imaging in children with apparently minor head

trauma is pervasive, emphasis is given to shared decision making between providers,

patients and their families. The goal of shared decision making is to clarify what

is known about the clinical utility of testing and the long term risks of the expo-

sure to ionizing radiation during CT imaging, and to help patients and their families

understand what their preferences. Empirical evidence suggests that most parents

prefer disclosure of risk before proceeding with CT imaging [24]. In addition, there

is evidence that the decision to proceed with CT imaging is sensitive to preferences.

For example, Karpas et al. surveyed 134 parents of children older than 2 years who

presented with head trauma. After a standardized education about the risks of in-

creased exposure to ionized radiation, most parents (𝑛 = 77) preferred observation

to immediate CT scanning, 53 preferred immediate CT, and 3 indicated no prefer-

ence [71].

The OCT rules are not as easy-to-memorize as the PECARN clinical predic-

tion rules. However, we have demonstrated that they substantially outperform the

PECARN tools in the training and test cohorts. The increased classification perfor-

mance may outweigh the loss in the simplicity of the tool. Having simple prediction
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tools is desirable but hardly necessary, considering the ease with which algorithms can

be integrated in electronic medical records and other information technology systems.

We found no evidence for optimism bias for OCT in extensive bootstrap-based (resam-

pling) analyses, suggesting that these results would likely transfer to new settings.

Internal validation efforts are not foolproof substitutes for completely independent

empirical validation of the tool in real clinical practice, as has been done with the

original PECARN tool [66, 84]. To effectively support shared decision making, a pa-

tient decision aid should be developed to help patients and parents understand what

options are available to them and to clarify their values and preferences about out-

comes anticipated with each option. Decision aids facilitate shared decision making

by helping patients negotiate uncertainty, and make choices that best aligned with

their stated and considered values. To our knowledge, such a decision aid does not

exist for children with apparently mild head trauma. We believe that developing

such a decision aid, and informing it with state of the science tools such as the OCT

models developed here, is an important future research need.
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Chapter 8

Conclusion

The primary goal of the thesis was to develop methods for constructing optimal

decision trees in a practically tractable way, in order to significantly advance the state

of the art in the field of decision trees. Since the 1980s, greedy heuristic methods like

CART have been the decision tree method of choice in both industry and academia,

and further improvements to such methods have been incremental.

Motivated by the incredible speedups in mixed-integer optimization over the past

30 years, we posed the task of creating the optimal decision tree in its natural form as

a discrete optimization problem. This allowed for the entire decision tree to be created

in a single step, overcoming the limitations of the classical greedy heuristics. This

MIO-based approach did not scale to the problem sizes that are relevant for practical

impact, and so we developed a local search procedure for efficiently optimizing the

tree, in both the theoretical and practical sense. These local search methods run in

very fast times and deliver high quality solutions which empirically match the globally

optimal solutions from the MIO solver in all cases where this solution is known to us.

In addition to the standard axes-aligned parallel splits used by methods like

CART, we also developed approaches for training trees with hyperplane splits in

an efficient manner. These trees allow for greatly increased modeling power at the

possible expense of some interpretability.

We first applied optimal trees to the prediction problems of classification and

regression. For classification, we found that OCT improved significantly upon CART
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in synthetic and practical settings. OCT-H improves further and delivers performance

similar to random forest and boosted trees. For regression problems, we found that

ORT had small improvements over CART, and ORT-H further improved but did

not reach the levels of random forests and boosting. We then adapted the optimal

regression tree framework to allow the fitting of linear prediction models in the leaves,

and the resulting methods ORT-L and ORT-LH achieved comparable performance to

random forests and boosting. These results are significant as they permit the use

of interpretable decision tree methods in practice without needing to sacrifice any

performance compared to using random forests or boosting.

Next, we developed an approach for using optimal decision trees for the problem

of prescription. This is a fundamentally different problem to prediction due to the

absence of counterfactual data, and so we developed a procedure for imputing the

missing observational data during the training of the prescriptive tree in order to

obtain a tree that simultaneously minimizes prediction and prescription error. We

showed on a variety of synthetic and practical examples that this approach leads

to materially significant improvements in prescriptive performance compared to the

existing state-of-the-art approaches in this area. In particular, we achieve competitive

performances without sacrificing the interpretability of a single decision tree.

Finally, we presented a case study showing the impact that our improved methods

can offer in a real-life practical setting. We applied OCT to the problem of diagnosing

children with head trauma, a task that is currently performed in the US using a CART

model, and so interpretability is crucial in this matter. We showed that our OCT

approach was able to maintain the current levels of detection accuracy, whilst reducing

the number of misdiagnoses and hence CT scans conducted by 25–50%. This is just

one example of many showing how the performance improvements delivered by the

Optimal Trees approach can translate to significant impact in the real world.
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